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STRUCTURAL DYNAMIC THEORIES OF FRACTUREOAMAGE OIAGNOSrS

ABSTRACT

In this report, twu modal theories of damage diagnosis in simple and

complex structures are presenteo. The modal frequency theory, based on the

changes in the modal frequencies of a structure due to damage, is shown to

be a suitable method for simple fracture configurations, but not for complex

ones. The transmissibility theory, which utilizes the changes in trans-

missibilities across a structure, is, on the other hand, proposed as a

feasible method for damage diagnosis in large structures.

The modal frequency theory is applied to multiple cracks in simple

beams to demonstrate its intrinsic uncertainties. It is shown that closely

spaced multiple cracks behave as one single crack as far as the modal

frequencies are concerned. Uncertainties may arise in the diagnosis of

multiple cracks when an inadequate number of frequency measurements are

available. When the structure has one major crack in addition to minor

ones, however, the major crack is diagnosable.

In the transmissibility theory, the effects of (1) the excItation

location and frequency, (2) the locations of the response stations where

transmissibilities are computed, (3) the crack location and severity, and

(4) damping on the transmissibility changes are studied for a three-story

four-span frame structure. It is found that best results are obtained when

the frame is excited near the joints at its modal frequencies and when the

response stations are located in the vicinity of the minimum deflection

points. The largest transmissibility changes are shown to occur at the

response stations nearest the crack. This result allows the crack to be
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located within one or two cells of a frame structure. The regions of the

'frame which, when cracked, are undiagnosable at the fundamental frequency

are established in the study. The advantage of exciting the structure at a

higher modal frequency, in such cases, is demonstrated. It is shown that

undiagnosable regions become larger for less severe cracks.

The structures are modeled without loss of generality as composed of

generalized Bernoulli-Euler beams, undamped in the application of the modal

frequency theory and damped in that of the transmissibility theory. Damping

is incorporated by means of the complex Young's modulus. In the analysis,

the general theory of circuit is utilized to represent simple beams with

basic electric circuits, and the fracture hinge by an electrical resistor.

The damage analysis of a complex frame structure is thus formalized and

adaptive for computer progranning. A formalized program for the computation

of frame deformation is enclosed.
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Nomenclature

a crack length

b half depth of a ftexural member

e location of the crack on a beam with only one crack

e a column vector with all zeros except for the last entry which is unity

(=L, /.61) distance between (i-lt. and ith cracks on a sL-2.pie beam:

relative length of the ith bea - seg-ment in a frame st-ucture

e., location of the single crack which is equivalent to -- group of cracks

(the dednition of equivalence is given on p. 56)

E complex Young's modulus

Ed dyn.a..mic Young's -modulus

Z- . E.z voltage sources in an analog T circuit for the ith beam segment

(no subscript i for a one-rheniber structure)

F sinusoidal excitaticn force

Fm sinusoidal force a. pLitude

Ga. Co conductances La an analog 71 circuit for the i th be ar segnent

(no subscript i for a one-member structure)

h L2/ EZli (.sc.pI.ed when referring to the ith segment)

h h value for the beam element with the force

j vector of current sources

area =orent of ner a

I LA cur.rent sources in an analo fl circuit for the ith bea-m seg-ent

(no subscript i for a one-member structure)

k total number of cracks on a structure

k, (k ) total rum=ber of coln'.rn(girder) cracks on a f.a.e structure

I. distance between (i-I)th and itth cracks on -a simle bea-m;

length of the ith bea. Segment Ln a structure

.. . .
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L length of a beamn

-1 number of span of a fr-arne stmrcture

M. vector of unimon rnoments

!jI resisting mo ment at the (i-!)th crack in a cantilever

Mi. ZI 2 resisting moments at the two ends of the ithe beani segment

(no subscript i for a one-member structure)

n nurnber of stories of a -rame structure

P,., Q, Q' vazriables of the analog lI circuit, subscriopted

when refe..-ing to the i th segmient

Ri 1 - w ; , relative change Lnj th modal frequency

pin relative change Ln jth frequency due to an equivalent crack causirg

the same change Ln two other frecuencies as the actual da-nage

relative tr-ansnissibity change

S. S', T, T' va-iables of the analog T cLcuit, subscripted

when reffrring to the ith s.eg-.ent

2' t-ansntissibiiuity

U matrix of resistances or conductances

V1. TKz resistirg cross-shears at the two ends of the ith bearn

(no subscript i for a one-member strcture)

W7, l7' variables of the -aog fl' circuit; subscripted

when refer.-- --g to the ith segment

X coeM'centm.-_natri cm f.M or y'

y complex modal shape or complex def.ection(real when &=O

-y nondi .iensional complex defection. Equation 4.7

yi defection at the ith crack; horizontal displacemnent of the ith focr

ym a=.plitude of complex deftection

yj complex deflection nder the excitation force

VI complex defection at a response station
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Vl, Y12 transverse defiections at the two ends of the ith bean segment

(no subscript i for a one- member structure)

y vector of deftections

y rotation of the ith node

g, rotatioa off the node r' Lr'n=ediately to the right of or above a crack

Yi IY" rotations at the two ends of the ith beam segment

(no subscript i for a one-member structure)

y vector of rotations

Zj, ZjC resistances in T circuit for the ith segment

Z coefficient matrix of y

a defned in Equation 2.31

f complex characteristic value reai when =0), '4=:;2 pL4/EI

f undamped characteristic value, flj=:;2pL/ Z:I

f characteristic value of the undarna.ged structure

t(J) j th characteristic value

* (p) jth characteristic value For the structure with an equivalent crack having

two other characteristc vailues in co_:L.ron with the actual da.maged Structtu-e

fl jth ch-acteristic value for the actual da.aed structure

g. characteristic value for the ith bea..n segnent

6 damping factor

r strain

-7f defined in Equation (2.51)

7 4/ , relative crack depth

,x torsional spring constant of a fracture hinge (subscriped 'or the ith crack

g, / Aj

v Poisson's ratio

p Lineal mass density



x i

o tr-ess

S sensitivity number for the ith crack on a simpie beam:

sensitivity nu:nber for the crack on the ith -nember of a !rawe stnucture

Wj jth modal frequency

Lj jth modal frequency of the undamaged structure

normalized length coordinate

, location on the beam ele.nent where force Is applied

location of the resPonse station cn the ith be=- ele..ent

Subscripts:

0 reference -alue when used on . EL £. A; no-crack case when used on T, y

c value with crack
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CHAPTER I

INTRODUCTION

Fracture damage diagnosis stems from the need to ensure safety of

structural components or structures, or from the requirements of quality

control in production. Structures may develop cracks from aging but most

likely as a result of some strong excitations such as in earthquake, blast

loading, wind loading and the like. Diagnosis of flaws is thus essential in

assessing the reliability and integrity of the structure. The diagnostic

method must be of such a nature that it is nondestructive. The present

report sunmarizes two diagnostic theories for fracture damage in structures

based on the modal theory of structure dynamics. The first one is the modal

frequency theory. The second one is the transmissibility theory.

Nondestructive testing began gaining importance in industry after World

War I even though there were earlier studies to detect cracks in metals

nondestructively (1]. Nondestructive testing had no great impetus, however,

until World War I. Since then, it has become a major area of research and

development. Nondestructive test techniques include the categories of

radiography, sonic-ultrasonic methods, visual methods-penetrants, electro-

magnetic methods and thermal methods. The current ASME code for the inspec-

tion of boilers and pressure vessels recognizes some of the existing methods

which fall into the first four of these categories (2]. None of these

methods, however, yield good results when the surfaces of the crack are

nearly parallel to the direction of propagation of waves or magnetic flux

lines. On the other hand, all of these methods ace local methods, that is,

the excitation (X-rays, ultrasonic transmitter, magnetic coil, or heat flux)

I ! ! - . ..
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and the sensor must be physically near the flaw. As a result, a scanning of

the structure or the component is necessary to cover all areas which are

likely to contain flaws. A global full-scale testing method is, therefore,

needed for diagnosis of damage in large structures such as bridges, offshore

platforms, buildings and the likes. By a global method is meant a method

whereby the location and possibly the severity of flaws in a structure can

be determined by exciting the structure at an arbitrary point and monitoring

the responses at various stations on the structure, without the need for

scanning. An ultrasonic technique described as global was proposed [3,43

for the inspection of tubular K-joints, where globalism is defined as the

capability to monitor an entire joint rather than an entire structure. The

proposed method, however, is not capable of detecting cracks which are

located around the periphery of the major tubular column near the joint [4].

A global method of damage detection studied recently Is the random

decrement technique [5,6]. The random decrement process is a signal pro-

cessing technique which extracts the free decay responses from the random

dynamic responses. The changes in the free decay responses at several

locations on an experimental scale model of an offshore platform were used

to detect the damage in the structure [5]. The scale model consisted of six

levels with K-joints at the mid-span of each girder. The predictions of the

damage locations in various damage scenarios were not very specific with the

random decrement method. The cross random decrement method was later

employed as an improvement [6). This technique utilizes two simultaneous

response measurements from two different positions on the structure.

Experiments were carried out on a similar platform model. Relative phase

shifts between every two neighboring response locations were computed using

the cross random decrement technique before and after damage was introduced.

l
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The largest changes in the relative phase shifts, in general, occurred at

locations near the damage. Both studies by Yang et al. [5] and Tsai et al.

[6] were purely experimental. Experiments of this nature are costly and

cannot be carried out for a significant number of damage configurations.

Consequently, neither of the studies was able to reach a general conclusion.

It was concluded, "due to the complexity of the large structure configur-

ation, the relationship between phase changes and the damage location still

needs more research effort" [6].

The report will cover two modal theories of damage diagnosis developed

by the author and his co-workers, using the change of dynamic character-

istics of the damaged structure. The modal frequency theory uses the change

of modal frequencies to establish damage functions, from which the intensity

and location of individual crack damage are diagnosed [7,8]. The appli-

cation of the theory to large structures and to multiple crack problems -was

made possible with the development of a general theory of circuit analogy

[9,10,11]. For complex structures or crack damage configurations, there are

intrinsic uncertainties of the modal frequency theory to be included in the

present report, portion of which was presented by Ju [12]. The transmissi-

bility theory uses the change of the transmissibility between a known exci-

tation station and a number of response stations to diagnose the fracture

damage. Oetails of the theory and application are included in this report.

The feasibility and application of the theory were earlier presented by

Akgun and Ju [13,14].

It is well-known that a structural member deminishes its load-carrying

capacity when a crack is developed in the member [15,16,17]. It was shown

in the case history of a large structure that the frequencies of the struc-

ture decreased after an earthquake [18]. Numerous studies have been

-I
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reported in the literature on the effect of notches and cracks on beam

behavior. Static deflection of beams with abruptly changing cross sections

was studied by analyzing an equivalent uniform beam with modified loading

[19]. This approach was extended to vibration of bars with narrow slots

[20]. An experimental and analytical study was conducted earlier on narrow

cracks, in which bending frequencies of a beam with a 1.6 mm wide crack at

the center were measured [21]. It was found, for this particular configur-

ation, that analytical and experimental natural frequencies agreed when an

equivalent slot width of five times the actual width was used. Such a

relationship cannot be generalized, however, since it omits the effect of

slot depth [20]. A combination of the finite element and transfer matrix

methods was used recently to determine the effect of grooves on the natural

frequencies of beams and, as an example, changes in the fundamental fre-

quency of a free-free beam with a slot at mid-span were determined as a .

function of the slot depth and width [22]. The method of representing a

slot with modified loading [19,20] was extended to a study of the effect of

a crack on the stresses and deflections in cylindrical shells and beams

under dynamic loading [23,24]. In the model, the cracked structure was

represented by an uncracked structure with the local reduction in stiffness

due to crack being accounted for by a pair of concentrated couples M located

a small distance c/2 on either side of the physical crack location. The

method requires the knowledge of static radial deflections at two points in

the case of a circular cylindrical shell from which the product Mc is deter-

mined and the model is calibrated [23]. The static modes of deformation are

then used to compute the dynamic response of the structure. The required

static deflections of the cracked structure need to be measured experi-

mentally or computed numerically to establish the dependence of Mc on the

crack depth for the particular structure.

A



Chondros et al. [25] investigated the effect of a crack in a welded

joint on the dynamic flexural behavior of beams. Their model was a massless

cantilever beam with a tip mass. The crack at the welded joint was modeled

as a torsional spring. The spring constant was experimentally determined

from the changes in the natural frequency for different crack depths.

Gudmundson [26] using a first order perturbation method for small cracks,

showed that the frequency changes are functions of the static strain energy

due to the crack. Gudnundson like Ju et al. [7,8] related the strain energy

to the crack depth via the stress intensity factor. In the case of a

cantilever beam, his analytical results showed excellent agreement with the

results of an experimental study except when the crack was close to the

built-in end. He explained the disagreement near the built-in end by the

influence of the built-in boundary on the static stress intensity factor.

Gudmundson [27] recent-ly modeled a crack by a static flexibility matrix

which accounts for the dicontinuity in the generalized displacements at the

crack location. He obtained the flexibility matrix 'or a cantilever beam by

using static stress intensity factors. For the case of torsional vibra-

tions, he used the finite element mehtod to obtain the flexibility matrix.

Gudmundson's experiments with a cantilever beam confirmed his analytical

results very well.

Ju [7,8] proposed the theory that the stiffness-softening effect of

crack damage in structures can be effectively represented quantitatively by

a spring-loaded hinge at the cracked section of the structure. He further

postulated in his theory that the spring constant is completely defined by

the configuration of the crack and is independent of its location or of the

frequency of osicllation. The determination of the effective spring con-

stant, hence, can be made experimentally or analytically. One of the ana-

lytical techniques for the determination of the spring constant is by

-A , , ,,.,,mLA .,,, - mr - • • '- -



equating the strain energy stored in the spring with the surface energy

gained through the creation of the crack surface. The fracture-hinge theory

has recently been verified by experiment to be reported later. A portion of

the work will be presented by Ju and Mimovich [28] at the International

Modal Analysis Conference and published in its proceedings.

The numerical analysis, used in the present report, is based on the

general theory of circuit analogy, which was initially developoed in Russia

[29] and was later generalized for structural dynamics by Ju and AkgUn

[9,10,11]. The fundamental principle lies in that the beam equations with

the assumption of modal shapes become algebraic and are mathematically

equivalent to the Kirchhoff's circuit theory equations. Oetails were

reported in [11]. The work has been generalized to include damping and

extended to beams of non-uniform properties (geometrical or material). In

this revised form, the general theory of circuit analogy is included.
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CHAPTE 2

GENERAL THEORY OF CIRCUIT ANALOGY

The structures considered in this study are bea&s and plane frames whose

motions are described by the Bernoulli-Euler equation with damping. The method.

used to analyze the strzctures is the electrical analogy method. The present chapter

is devoted to the development of the analog circuits and circuit equatlons for a se --

and for a general frame with and without cracks. First, the complex Young's .-nmodulus

and the types of damping which can be inco-.porated tr the structure model are

studied in the next section.

2.1. Types of DampLng Encompassed by the Model

2 .1.1. Internal Damping - Complex Young's Modulus

Metals at low st-ess display linear viscoelastic behaviorir 30] The general stress-

strain relation for a Linea- "scoelastic material is given by [ 31].

(r + a ID 1 +1an+...) a= (b+ b I+.' + D+. (2.1)

where ak and bk are constanrts and Dk denotes the A. th Ma.ti;al derivati-e -with respect

to timne. When a and c vary sinusoidally with time, Dk = (iw)k, and

=E(w.) = Zj(w) [I + i d(w)] (2.2)

where E(w) is the complex Young's modulus Ed(u) is the dyn;-a.c Your4' s rodulus

and d(w) is the Loss or dapLng factor. The real part of ZE(u) is ternmed the storage

modulus and the imaginary part is the loss modulus. For low danping materials (3 of

the order 0.1 or less), variation of E with frequency is slow. For many materials cf

engineering interest, E and 6 may be treated as constants. Common meta-s such as

aluminum- and magnesium-n, for which 5 is very small, fall Into this category [ 31,

pp.27,137]. A type of damping which is sometimes used in e.exural and longitudinal
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vibrations is the internal strain velocity damping (viscous) for which the constitutive

equation is

1" = Ed r +bDj r (2.3)

where the second term on the right is the damping stress [32] For harn-onic

vibrations,

E ib w

'd =E (1 +--t- (2.4)

which yields a da.mping factor proportional to frequency. Expe.imental evidence

contradicts such dependence of damping on frequency. A more realistic damping

factor may result Lf higher -order time derivatives are used n Eq. (2.3). However, the

damping force in real structures appears to be in phase with the velocity but

proportional to the displace.ent C 32 p.761. Such da=zin is termed structural or

hysteretic damnping. The constitutive equation car. then be written as

q = Ed c + ide. (2.5)

The compzlex -nodulus for structural danzLg then follows 'rom Eq. (2.5); that Is'

£ = Ed(1 + (2.6)

dE

where - is the structural da.m...pLing factor which is independent of frequency. in this

study. E will be used Lri the form given by eq. (2.2) without referring to the ty-.e of

damp ing.

The detection of a bea _ under transverse vibration, excited by a sinusoidal

force, is governed by ' 31 p.196]

IL~y _ " Y1e W= 0(2.7)

where i = =-is the normalized awdal coordinate, y = y(e) is the complex modal shape
L

and
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- _ _

12
where = a and 8d, at resonance, is the undamped characteristic value. ,

near resonance, will be called the "cornple- characteristic value". When 6 is szn !.

# P (1i . (2.9)
4

In the study, however, exact values of fl are used.

At this point, a clarification on ter--inology will be made. It is appropriate to ca l

y the cornplex modal shape, and this term has been used in the literature. "he

physical shape of a damped beam under forced vibration, however, cannot, in general,

be referred to as the modal shape. This is a consequence of the fact that the physical

beam dedection cannot, in general, be expressed as the product of a time f unction

and a space function. The arg-m.ent can be Ulustrated by taling the real part of the

c=mplex deftection. Na=ely,

w= Re [y' e"]Ym~ cos [w t )](.)

where u!, is the physical deftection, and y, and 9 are the ='agnitude and phase agrgle

of the complex modal shape y, both of which are functions of t and :. Orly wlhen

= 0 (Le., no damping), can y, be referred to as the modal shape. in this study, Y,

is termed the ---npLitude of deflection.

2.1.2. Efternal Viscous Damping

When there is external visccus resistance to the tr.nsverse har-oric vibration of

a uniform beam. the gove-ning equation is again of the fortm of Equation (2.7) where

is now defned as

=(2 -i C L (2.1 )

El

where c is the coe~cient of viscous dampi g. Therefore, the methods of this study

are also vaLid when the damping is of the external viscous type or a cornbination of

external and internal types.

~l~ i li [ ,-A
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In the remaining part of the chapter, the basic circuit analogs of a beam and a

general frame with cracks are derived based on Ec. (2.7). In the frequency theory

(Chapter 3), the st'uctures are assumed undamnped and therefore g is real. In the

transmissibility theory (Chapter ), damped structures are considered, for which 8

is complem. The sane analog circuits, however, are used in both methods, with f

chosen properly.

2.. Basic Analcg u'Iit s

Keropyan and Chegolin gave the T- and fl-circuit analogs of vibrating beams -29].

The analog circuits will be rederived here. The complex mode shapes of a Bernoulli-

Euler beam element under transverse vibration are gven by the solution to Equation

(Z 7). That is,

Y~t) = Icosbh4 sinh'6 -- Zcos Ai-+ D sin A$ (2.12)

Four variables are associated with each end of the beam elemnent, namely, deftectIcn,

y, slope (or angle ot rotation), yg', resisting nornent, I, and shear force, V (Figure 1).

From Equation (2.12) and its appropriate derivatives at 0 0, the variables at the left

end are obtained:

-Y' + L

,E = 7 1V6 ( -)EI (13)

Fro. the ecuations in (2.13), the four coeffcients caz be solved for Lr t .er . s of te

four variables. Namely,

X=(y, + h 111) (y I-' -a h7).

2 .2#
=V - h=d)(l + hV )L

2 2

where h E . The variables at the right-nd of the beam element are obtaineed

from Equations (2.12) and (2.14) with = 1. T"he result is
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Figure 1. Beam element under free vibration.

Y2 AV I PY '=rt'-.+ CM1A - DVjh L

y2'= DyL+ Ayl' + BMIL CVh

V= -Ey 1 1- - CI-- DM I' + AV, (2.15)

where

A (cosh S + cos S) = (SA5 + - )2 2

c (c ash - Cos ,) D (zn - t ) (2.16)2 2 (.6

Any four of the eight vea.rables in Equation (2.15) can be solved for in terns of the

remaining four variables. The mathen.atical analcgy between electrical circuits an

beans is based on the liner transfor-: (2.15). The type and proce.ties of the resulting

circuit depend on the choice of the indecendent variables. n this study, angles of

rotatIon are analogous to voltages and resisti;-ng mcments are analogous to electzical

currents.

2. Z-1. T C-cuit

When the condition sing;40 is ihnpcsed. (B is real for an undanmed ce--t) slopes

and shears can be ezressed La to 'nts of resisting onments and deftections. -hus,
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frm Equation (2.15)

-h-' -A T -S' T"

Y2, T AS -T'" S, (M?7

V2 T7" -S' -TIA. -S/Ah 7/2

wh~ere h -2e ai.

S= cothg~- cat g

3' coth + cot

T csc p-csch

=csc + cs-h ~(.~

The Lst two equations i~n (2- 17) C=~ be re'-r-itteri as

I(Z+Za)!,I - Zc!ZI2 -+, V2' = ZCSI1  (Z ZC(22.L)

where 
LT

Z TLA')Z (2- 2)

El (W'Y 2 - S*Yl) Ez (S'Y2 -' W 1) (2.21)

7he two ectuatiorns in (2t e "K,-:hc~ equaticrns for the active th-ree

terminal netwcrk sincwn- lzgz 2 (2' z -c'it)ith slope =nd -moment 1Y, M) ': i-

analogous 'to eiec-" **~ca g and zretrespectively. Th-e cun~~sZ n

denote ele-t:.cz.i =ezead .,cfta-e SOLzce, resectively. Negative resiztance

(real cart off 2) poses no diMculty in e-naivticai6 and numner-icall e-ayes. The ends of a

bea.-. segn.ent are simulated bY the ports of tbhe cici.It must be observ'ed t'hall t--e

electromecza.nIcal -nalogy described above does not simulate the dlfeential

ecuatie-n of motion, but in-stead tte solution based on- "he assumZon '-f c

m~otion (29].
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MZ Z E2 - M

a a

Y1 ZO Y Z

Figure 2. T-circuit analog of a beam under free vibration

Bounda.ry conditions at the ends of a beam ele-nient can be sinulated as follow.s:

a. Free end or simply-supported end, Mf=O: the corresponding port of the cL-cuit

is left open, which results in zero eiectrical current.

b. Fixed end, y'=0: The corresponding port is short-circuited. which results in

zero voltage. The other boundary conditions at these ends and the last two Equatlons

in (2.17) are utilized to express tle voltage sources. Equation (2.21), In tarns of the

monents. as w;il be liust-ated with an unda-nped cantilever bea.-n vibrating freely

(Figure 3). All of the circuit var.ables are real in this case. The .- caoffs voltage law

applied to the loop yields

(Z + Zc)MI + E = 0 (2.22)

wbere Z is the anal-g resistance. From .the last equation if (2.17) with W, = 2 = 0,

V 0 =:0 - Y2 I (2.23)

from which

and El 1: 1 " (2.24)

The second equation La (2.24) Is obtained from Equation (2.21).

_,, ,
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El

'4
YI:Y{O M1=V:=O

El Z Z.:

(MI.

Figure 3. Cantilever beamn and its T-circuit analog

The substitution of Ecuations (2.20) and (2.24) into (2.22) and the fact that M 1 0

result in

s = 0 (2.25)

which yields the characteristic equation of a cantilever bean. 1 + cosh,6 csc .= .

In the derivation of Equation (2.17). it is theoretically sound to L.-npose sing * 0.

However, during the numerical search of the undamped natural frequencies, sing

may get very small at some point, or the structure =ay actually have frequencies at

or near sing = 0. The solution to the problem lies in realizig that g is directly

proportional to the length L of the bean- elemen. The probLem can thus be solved by

dividing the bea. into two sections and representi.g each section by an Lndivid.uai

circuit. To llustrate the approach, an undamped simply-supported beam is

arbitrzrily divided into two elements with a length ratio of - (Figure 4). With

reference to the figure, the continuity conditions in slope and moment (voltage and

current) at the corrznom boundary is preserved under the cascade connection of the

two basic circuits. The loop equation then yields

-AM
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4L7. 6L.

El Z, ZI E12 Eli Z2 Zz E2

+ +

ZZ 2

Figure 4. SImpLy-supported beam represented with two eements
and its Analog Circuit

(Z + Z + Z2 + Z 0c)M12 -12 2 Ez 0 (2-25)

Since detection is continuous at the interface (Le., Y12 = YZ2), it can be shown that

E Y1291S' = - V1262S2 (2.27)
I,2 = 2L, 2L2

whe-e L1 = 0.4L, L2 = 0.SL, g, = 0.4f, and 02 = 0.59 with g' =,o L/EdI. Fonm

Newton's third Law 712 V 21, or

- h.Mz(S + )(
!/12 = S1.+S2  ZS

Equations (2.20) ad (2-25) through (2.2-) can be coarnbiaed to yieLd the frequency

equation

(Sl' + S2) - (S= + S 0)2 : 0 (2.29)

It is to be noted that for the oarticular sectioning in this iUustration. the same

problem will arise at the fth natural frequency where g, = 21- and 92 = I-. Them the

same procedure can be applied by further sectioning he beam. Better initial

sectionings are of cv..-.use possible than the one presented.
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2Z2. Il Circuit

Slnila-r to the case of Equation (2.17) in the T-circuit, Equation (2. 15) can be

rewritten such that resisting moments and shears are expressed in terms of

detections and slo:es: that is,

QL/ / WLl/ Q' -W' Y1

M 2 -WL19 -QL. -W' Q 2 (230)
VQ, ;' P,6 L -P',6 L Il

V2  Q Q' -P'p/ L -Pj/ L] ,

where

P = (csh e g + cs )/ p. giCosB#52 P =+

Q = (csA e g - Jz cas 9)/ a Q' =

W ;7 n = - S.n 5' W, = C~S ,8 - Cos 8

a= Cosh g Cos P -I V 0 (231)

The f-rst two ecuations in (2.30) can be rewritten as

M = (G + Ca)y I' - G 4V2 + 1 1 M2 = GcyI' - (G + GC)V2 + 12 (2.32)

where G and I are the analog ad-zittance and current source, respec tively, given by

G (Q + W)-L- . G - (2.33)

ri = (Q'Y I - WY 2)/h . 12 =(Q'*y -,YT / (.4

Equation (2.32) is the .-rch hof's current equation for the active three te.n-ia

network shown in Figure 5 (nI circuit) with G an. I denoting an admittance and a

current source, respectively. Moment. , and slope, V', are again arn-Icgous to

current and voltage. As an illustration, the cantilever beam of Figure 3 will now 'e

simulated with a I circuit. The left port of the circuit in Figure 5 is shorted ytelding

the circuit of F"Lgure 6. TIhe node voltage equation is

.... . . . m l .. ... . . _
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M y Go y; M%

G G
IC L -

F gure .4. fl-cL-uit an alog of a bea:- u.-der free v.bration

Y M2

GoI G i:

Figure S. Analog 7-circuit f or a Cantilever Bea'n

(G + C ) 2'- 12 = 0 (2.35)

The last equation in (2.30) with y I V 1' V2 = 0 yields

V2 (2.36)

The cha-racteristic ecuaton is obta.:med by substituting Equations (2.23, 2.34. 2.35)

into (2.35) with the result that

Q -~~~-0 (2.37)
P

Wil, reference to (2.31), .Equaticn (2.37) is ecuivaLent to I + coshg cos$ = 0. Up

i - coshg cosg $0. When the value of a(Equation 2.31) approaches zero, numerical

computation diverges. SLnila.r to the approach in T circuit. the be- ca be

subdivided into elements as desc.ibed in the previous sectuon.
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2.aa Simulaton of Crack with Circuit Analogy

A cracked section in a beam is modeled following the method of fracture

hinge [ 7,8 ]. The efect of a crack is to introduce local ftedbility in the bea-m-. he.

slope of the mode shape is discontinuous at the cracked section. The crack can thus
be mechanically represented by a torsional spring of spring constant c. The

discontinuity in the slope is given by y' = where Me is the resisting moment at'

the cracked section. Such a discontinuity is analogous to a voltage drop in the circuit

theory, when slope and moment are analogous to voltage and current, respectively.

The crack can then be simulated -vith a. resistor of resistance -1I ic. 'Hence, a beam.

with a single crack is represented by two circuits (T or jl) joined by*a "crack

resistance," -1/c.

The derivation cf.c is based on equating the energy stored in the torsional spri-n

to the increase in straL energy of the bearm due to the crack. For a plane strain

crack, Liis approach yields f7,81.

7

1 3. J.- J) LJ A [ C (- (2..3)
'- E. I

,Yhere 7 = is the relative crack depth (Figure 7) and f is the dimensionless stress

intensity factor for s-mmetric cracks gi ien by

(7)= ( )-[i-i -2.3-3y + 4..3679 - 4.E89 + 2.34.5---/ - 0.5637/] (2.39)

The analysis of the next chapter will indicate that the crack L=temsity is quarif.d by

the foilcwirg nondimensional number.

g~z (2.40)

Equation (2.38) reveals that e is a function of the beam slenderness ratio, 2b / L. and

the relative crack depth, 7. The analysis indicates that as the value of 9 increases,

the reduction in the natr-al frequencies of a beam aiso increases. Hence, of the two

beams with a crack of the same relative depth, at the sa-ne relative location, the



19

plzane-strai n h=Zb

Mode .1 cracks

(a)

110 L* -.' torslcnal scring constaivt,

Figure 7. Crack geo~etry and eqi-vallemt nract,_,e hinge

!&ecuemcles of the more slender bee w4_11 experience sn"-Uer cham;ges. 7hrefo-. a

is ca"ed'=the "sensitivity mu..nter'.

2 A. Ammlog Circuit f or A PMane Framne

Keropyam, and- Chegoilin presented some e=xa.;les of th:e an-zLication of elec'trical

*analogy circuits t~o the solution of static and. dymanic Lrare problems [29]. The

approacnes presented by them to fra.mes with freedo= of lateral =.o i Ive an

iterative solution cr a several step procedure. in the former, the e.maoumt of sideswray

is guessed and itaiated ca. in thIe latter, the fram=e is t.rst. restricted. latera-1ly, th-e

reactions at the restrictioms are solved for, and the sidesway is then cc-mut-ed. Both'

of these approach:es becoze comnoacated and =ne:cm::icazl for =nlti-story 7 ms
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Keropyan and Chegolin illustrated the letter approa~ch with a static one-story7 frame

problem. Their exarmnles of dynamic framnes involved laterally constrained frames.

This section expounds a generic m odel of a two-dimensional multi-story frame

(Figure 5) with n stories a.d m spans (thus mr +11 anchors). Damage diagnosis on such

a frame using both the frequency and the transmissibIlity methods will be developed

in later chapters. In the study of the frequency method. free vibration of the frame

with anid without a crack is analyzed from which the charactenistic equatin is

derived. In the development of the tranismissibility method, tr-ansverse d e~fectiom at a

certain location is computed uncier a sinusoidal exccitation force. The analog circuits

are- the same in both methods with Ithe exception that, in the second method. R is

com~plex and some additions are made to the circuit. In this section the circuit

equations are derived in the-;- most general form to be applicable to both methods. A

formalized scheme Ls developed for obtaining the c-;cuit equations of a general frarne

ith or without cracks, fromt which the mro'd fececisordsie kineti ~d

-kinematical quantities can be computed. In the T-circu;it analogy, the circzit

ecuations for the structure are developed through the mesh current (mom--.ent)

equations. Hience, the u,2liowns are the momnents at the !rame joints and at the

cracks. There are p -1 unIk..o-6r. moments at a fram-e node weep beams join

together. Because th:e momrent is continuous across a c.rack, th1ere is one unknovwn

moment for each. crack. It follows that the order of the resulting ILiear systarm, which

is equal to the number of urik-owns. is [n(3m+ .)4.k +-2] for a fram-e with-' k cracks and

one excitation. or-e of the un.L-novns being the value of the ki.netic or lr.nematical

quan tity at the desired locat-,icn on the str-ucture. On. the other hand. in the Fl-cir-ctt

analogy, node voltage (slope) equations lead to the circuit equations. 4Slope is

continuous at a fr.ame joint: therefore, there is one unknown slope for each frame

joint regardless of the number of bee=~ connected there. However, there are two

unknown slopes at each crack location. one on each side of the crack. In other words.

slope is discontinuous across a crack. Th-e stractu.ne is assumed rigidly ftxed at the

ground level; hence, the slopes are zero at the anchors. The order of the system is
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Figure S. General n -stor-y t-span fm&'ne struct-Ure

thus [n41)+2k+z2I with F1 circuits. Th~e fl-circuit analogy is therefore pefferred

over the T-icutanalogy, since th-Ie order, of the system for k < 27rr is s~alller .

the for~er.

The procedure to obtain the circuit equjations of a fr-ane structure aze outlined

next.

(1) IT circuits sim.ulatin,,g thdividual columns azd giders joining at rig!ht angles a-re

interconnected such that the boundary conditions at the analog-framme joints are

satisfted. (111 will be shown that a met-wvork "iagram need not actually be dzaLN.-,)
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(2) For each crack present on any element, one more II circuit and one crack

resistance (hence, two more unknown slopes-voltages) are added to the network.

A girder or a colum with p cracks is thus simulated with p+1 circuits

connected in cascade via the crack resistance, The erst and the (p-)±-h

circuits are then connected with the rest of the network according to Step 1.

(3) The beam element with the excitation is divided into two elements at the point of

application of the excitation and is thus represented by two f1 circuits L-nstead of

one.

(4) When a inetic or kinematical cuantit7 is. desired at some location on the frame,

the corresponding bee- element is again divided into two beam. elements at the

desired location and. represented by two II circuits. Steps 3 and 4 are sldpped in

the frequency method.

(5) KI--cbhhof's current law is written Ln ter.s of the node voltages which correspond

to the angies of rotation at the fr-arnejoLnts and at the cracks.

(5) Kinetic conditions at each floor level and shear conditions at the cracks, at the

excitation location, and at the location where deflection or any other quantity is

desired are applied. 7his allows the lateral n-otion of the floors to be computed

directly.

(7) .This step is perforned when the frequency method of di:ancsis is used. Under

free vibration, the coef.fcient matrix obtained in Step 3 must be singular. if the

damnage parameters (ime., location a.d severity) for each crack are known, the

characteristic values of the sructure, jgI, can. be deter--ined fmo the zero

determinant of the coe cient nnatrix (the forward proble-r). if t.e

characteristic values are known, the damage parameters can be solved by using

the characteristic equation (the inverse problem).

(8) When the transmissibilit 7 method of diagnosis L used. the Linear system of

equations is solved for the defiections in terms of the excitation force.

A m " m M Am L
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The ap proach taken here results in a formal scheme which can be applied to

fr'ae structures without referring to an actual network diagnra.. .ference is made

to Figure 8. The word "wall" will denote the union of all the coluzrmns on the same

vertical line. Each node and each beem element is identifted by a number. Numbers

corresponding to the nodes are encircled in the fgure. The numbering order for the

beam elements begins at the left lowest column, proceeds up through the columns on

the Erst wall returns back to the second anchor, proceeds up vertically, and

continues in that order. Once the columns are ftnished. girders on each floor are

numbered progressively :rom left to right starting with the frst floor and continuing

on with the upper foors. Quantities related to a beam element such as G, P. Q, etc.

are subs crpted by the number of the ele-ent. Each node is numbered by the

colum.n under the node. If there are v cracks on a column. (gder), the originaL

number ot the beaz elenent refers to the uppercst (rightmost) segment of the

colunun (girder) which is now represented by v -il beam segments. h"e other

segments are numbered following the largest" number in the scheme. Due to

discontinuity of slope at a crack two new nodes are created on the two sides of each

crack. The location ! on the structure, henceforth referred to as the response

station. denotes the location at which deflection or any other quantty is to be

computed. One =ore node is thus created and one more 1 circuit is added. Another

node is added on the column 2n-2 where the force is applied. These last two modes

and the beamn segments below (to the left of) them are nu-mbered the last in the

numbering scheme.

Z_ 1. Analog Cir-cuit Equations and Boundary Conditions

a) NodAl r-ouations:

Figure 9a shows a typical node r at the intersection of cclumn elements r, s and

girder elements p, q. In reference to Figures 8 and 9a, the sum of the branch

currents enterng the node T- is set equal to zero. Namely,

.. ~ , MLA,, . -', sn
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Y ,'( G + , + G, + ,) + 1p ,2- 1,; + 1,2 -. , 41 0 z

where (yi' - Y,.') is the analog voltage ditference between the nodes i and r and Go is

the conductance which connects these two nodes. The current sources appearing In

equation (2.41) are dependent on the transverse defections of the two ends of the

bea, eiemnents to which they correspond. Under =P11 deforznation theory, vertical

delection of the modes shown in Figure 3 is, by second order approx.maticn equal to

zero. Thus. in Fiure 9a. Y,2 = Yqi = 0. where Y,2 and Y.1 denote the defections of

the right end of the pth girder and left end of the qth gir-der, respectively. if. Lin

addition, the nodes i and j do not bound cracks, then y = yq = 0. Comsequently,

fyi = ',2 = qi =4,2 = 0 !rorn Equation (21.34). On the other and. 1,-2, for instance, is

not zero since, In general. yr1 0 0 and y:-2 = y., ; 0 (I.e., sidesway is allowed).

Upon substitution of ecuation (2.33) into (2.41),

~Yk "17 I -YL'?7~xs 1Yv+ Up ~-(Z2 1?r 1Z -A,2r.1) " 0 (2. 42)

KD

junction node crack nodes

(a) )

Figure 9. Typical Nodes on the Frazne
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where 7 = (EIi/L)s d[ is the c acteris c or the reference value

chosen for the frne.

In the fornation of crack nodes, Fgur-e 9b shows two nodes, r and -1, ac.oss a

crack on a beam element. :rchhof's current law is written for the node r:

(Ygr **ia')~, C-- (91' - VI') (-C) - 7"G + 1,2 = 0 (2.43)

where :.' is the rotation of the node r' and the ccnductance -c represents the crack.

The nodal equation for the node 71 is of a siilar for-- Equation (2.43) is valid

whether the crack is on a girder or a colun= The same steps which led to ecuation

(2.42) yield

- ~cl+1)J ee~:4~6) 1'7t" 2 = 0 (2.4.4)

The node t (Le., the re spcnse statimo) or the node =-der the force in 71gure 3 is

the s -e as that Ln Fgure 9a when the branches - and q. are removed. The ncda

equation for such a ncde s then obtained for Equation (2.41) or (2.42) by setting aL

of the variables wita a subscri--t p and a ecual to zero.

b) Zounda-.v an Corntinu-itv Conditions:

From the small defcrm--.ation theory, points on L-diers on the sa.e foor le-el wUl.

have the same hcrizontal dlispiacement. Na.rmely,

j .= y n-i = '" = y m. j i = I ..... j = 1.2 (2..5)

Also, Yi2 = Y.+L.l, i = !.....n-1. On the other hand, defection contimultv ac-ross a

crack implies that defections of the nodes r azid r' In Figure 9b are equal Defection

is continuous at the excitation node a; i at the node t also (Fiure 8). Thus, there are

n+k+2 unknown deflections associated with the fram.e, k denoting the total nmber

of cracks on the Lra.e. If the horizontal displacenent of the ith "door is designated

by y (y * 2, i = 1.....n), an [%+k.+2]-vector of displacements and ai:

[n (r +1i) -a +2] - vector of rotations are obtained as

_ _ , _ __ _ .. _ , . -. .w-. . .. .J:& . ..
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y' ' .. . 'n(m,**) Vc' gcl' "" , k' Yr, tt (2.45)

where ? desi.nates the transverse deflection aL the ith crack, and y,' and g,,'

designate the rotations L-uediately to the left of (belcrw) and to the right of (above)

the i.th crack which is on a girder (colunm). The subscripts f and t denote the node

under the force and the node ±, reszectively. The ='=-own deftectiors can be re.ated

to the rotations via the kinetic ecuations, de~fl" the sideway motion of the floors.,

and. the shear cont-uity conditions at the cracks. Cross shears at the colu-n ends

are 'the axial dri ng forces for the 'cors. The axial acceleration of a focr: which is

conposed of all the girders on the sam-e level, is the saze as the Larnsverse

acceleration of the coiu-n:n ends at the nodes where the cou.--ns joi= the ftccr. Thus,

for the ith foor (Figure 10)

{7ii ~ ii~Ag (2.47)

j =c

wher e p-i.-~ - 1 .i-i)r.Al in accordace ith the nun'ber.=-g order described

ea ier an=-. k the total number of crack3 on the 'th foor. There is one such

ecuation for each foor. Lhe term in the braces on the right-hand side of Equation

(2.47) is the total mnass of the ith "oor. Wlhen there is no crack on the ith oc:, :e.,

= 0, the second su:mn.i.aticn ter...- on the right-hand side is absent. 'nen there is a

crack in. frarg. L 1 denotes the length of the right segmemt of

this girder. Mass -71 of the left segment is then included in the second su=--aticn

term in Equation (2.47). Equation (2.47), upon substitution of the iast tov equations

in (2.30) for shears, will relate deflections to rctations. Figure 1Ib shows the diag a .

of a -,ne with =. n=2, k=2. A harmonic load is applied to the frame and a

response station, t is shown. There are tea nodes, ten bea-n elenients (hence ten

interconnected 71- circuits) and six unr-kowvn delections. The -st .ocr h'as one crack
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on it. The Id.netic equation for "he Ifxs "locr wiU-h pe =p:. has the for.n

V12 + V? - Vj- 7,= w2j(Lz La) (.8
whre for instance,

771  T ~.Q7'Ys' + ;y'Y? +P~1P~7~ (2.49)

L-13=. Equation (2.30) Y t ys, = ' 0., y= Y, z y = ', y y

y7 wy,' Upor. substitution of szlear expressioms, Equaticn (2.49), an t!: ____U

ecuations for V12 and V2,, into Ecuatiom (2.48) the followi equation, is obtained

.1it Vr2.f 1  levKe1

Filg'.=e 10. Cross shl-ears Lm t!he aouns~dioining the ith! f.cor

/M
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Figure I L A two-story, sizngte span fram,-e (a) without crack. (b) with two crack3

one e.'itaLion and a response station L (c) Electrical Analog of "he fra e.
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- Tz 2 - 77zP7'Y/ = (7 12Q1 -72q2')Yt'

- W2*Y2' + (QZ' -77 2 Q73')3'7 - f?7 (2510)

where

(Ei X (2.51)

In Equation (2.51). i is the number of the beam element or the beam segment and j is
an exponent. T-e inetic equation for the second door can be developed similary.

Applicaticn of shear continuity at a crack will now be demnonstrated for the crack on

the first focr (igure 11b). Hence VS2 = Vjt, or from the last two of Equation (2.30)

i,, e  ) = (Q ,ge.L 4(2.52)

since Yal = Y52 = 0. The following expression is obtained by rearranging Equation

(2.52) and notLng that h. = hA and g' -=':
Lis La

-}(Pa + P,)y, = ya, - ;i'ys' - Q''(253)

Shear continuity at the response station yields an equation si=ilar to (2-43). Mie

shear discontinuity at the excitation location, on the other hand. can be expressed as.

V= V I1 + Fm (2.54)

which yields

y( -L P . ) Y - P ' = ( Q g ' - Q l') f' - W ' I' + h i F m ( Z 5 5 )
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c) Mfatr x Equations for a Gee-ai Era e Strhctue:

For the general frame structure, there are n Idnetic equations of the form of

equation (2.50), k + 1 shear-continuity equations (k equations for the cracks and one

for the response station) of the form of equation (2.-53), and one shear discontinuity?

equation given by (2.55). These n +k +2 equations can be arranged in a =atrix form to

solve for the defections in ter=is of the rotations, namely,

where e is a column vector whose entries are zero except for the last entry which is

unity and hf is the value pertaining to the beam element with the excitation (for the

example of Figure 11. hf = hj). On the other hand, the nodal equations (2.42) and

(2.44) can be arrang _ed in the form

(L jHii-Uy'=0 (2.57)

where i is the vector of current sources and is related to the det-ections via Equaticn

(2.34); that is,

1 -LH2y (2.58e)

After Equation (2.58) is substituted into Equation (2.55), then Equaticn (2.-4) into

Equation (2.57), amid it is noted that H-1H = X, the slope equation results:

(XZ-'X- U)y' = h, Fm XZZ- e (2.59)

This is the general form of the result for any planar frae with any nmber of cracks

on it. The coefficient matrix in (2.59) is syrnmetric. The individual matrices, --

general, have the fcr-s
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I (l) kg 2k7 2

I I ] IE, Ft.. +, H ., 0
X = _ _ _ l _ . _

L2L

n (m +12k, 2k7 2 n k k7 2

uo, A 7 a , C.,o

F Tl

U= -- 1--h- -- I V . z - NJ (2.81)
r0 B 7 ~ 0 10 1?71

with y and y' ar-.azaed as in equation (2.4S)

YCl YC'

Y= y7r y y7 (2.52)

7Lr I I

Vt -Y,

where the subscripts - and g refer to cracks on the colun=.s and on the girder ,

respectively, with k, and k., being the total number of cracks on the columns and on

the girders (k = k + k7 ). Hence, y, and y., for exan.-imle, are the vectors of

defections at the coiu"n and girder cracks, respectively. YO is the vector of the
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horizontal floor dispacements. Y.- and. Yf~ are the transverse detections at the

response station and at the excitation location. respectiveiy. It should be noted that

) , Ijo, and 2 for the case of no crack are inodifl-ed when cracks are intr-oduced on

the frame. The matrices U and Z are symmetric.
da

When t-he rotations are to be computed. Y' can be solved for from Equation

(2-59). When the detiections a..'e needed, _V' can be sol.ved for from (2.57) and

substituted into (2.56) fro n which Y can be obtained. This yields

Y = fFm[ j(X1Xl - Z)-1e (2.63)

With Y aad Y known, resisting moments and shears can be coniputed L-om Equation

(2.30). When th1e free vibration of the structure is of interest, Fm = 0 and the

coefcient matrix or. the left-hand side of (2.59) is singular. The deter-inanit off the

coeffcient matrix then yiellds the characteristic ecuation of !.he structure. A

conmuter program is written to compute the deftections on a generalLframne

structUre. The listing of the program is given in Appendix.

A formal procedure will now be described to estabish the above matrices without

the need to draw the actual analog circuit.

2.5. Procedure to FztabLish the Miatrices

In the following, for simp~icityr of explanation, properties of the beam- elemaents

are ssumd unformthroghoaut the frame exceptk fo.r the lengtUhs. That is, r7ij = 1.fo

all i,j.

1. To establ~ch the U matr_

11 is composed of the. coe~.cients, of the rotations yj in equations such as (2.42)

and (2-44). The i th row in the matrix stems fram K~rchhof'"s current law written for

the ith node, the first n(mA4-l) rows being for the nodes on the frame joints, the next

2k rows for the nodes at the cracks, and the last two rows for the modes at the
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excitation and response locations. The procedure to establish the entries of the

rna-trx is outlined below.

a. The diagonal e=.-/ u will be the sum cf the Q values(Equation 2.31) of the

beam elements adjoining at the node for which Irchhof's current law is being

written. If this node is at a crack, then u. is given by the Q value of the elernent

ending at this node minus the A value for the corresponding crack. where
1

-A =.The diagonal entries of Z and B7 rrix thus be of the form (Q., -. ).

And.

b. The oa-diagonal ent-y %k4 will be r7jV(Equation 2.31) if the nodes corresponding

to the columns i and j of the matrix are Linked direct-ly by the k th beam element. If

these two nodes are linked by a crack. Le., they are the nodes on the two sides of a

crack, then %- is given by the M value of the crack- Otherwise uj = 0. Due to

sy--..-metry, = u,. The ith row of UO in Equation (2.59) is Uncharged relative to UJ

of the no-crack (k =0) case if the ith node is not adjacent to a cracked elenient.

2. To establish the Z m-tri-

The rnatrices Z and X stem from the kinetic ecuations and shear conditions. The

Lr-s n rows in them represent the kinetic equations governing sidesway of the

floors. The next k +1 rows correspond to the shear continuity conditions at the

cracks and at the response station. The last roaw results frorn the shear d:scontinUit7

at the excitation location. Z crists of the coef.cien=s of dedections Yj and its

entries ca=x be generated as follows:

a. The diagonal entry zj for i=2....n will be the sum of the g values of all the

girder elements on the ith door plus the sum of the P values(Equation 2.31) of all the

columns adjoining at the ith '"oor. If a colun adjacent to the ith fdoor is cracked

then only the P value of the column segm-ient nearest to that floor will be included. e

can be expressed in terms of the characteristic value go as g = ek . If the fr-am.e is
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homogeneous in properties, then eb = 4/Lc. The diagonal entry z for the next c

rows (Le., the diagonal entries of the D matrices) will be the su= of the P values of

the two beam segm..ents on the two sides of the corresponding crack. z. for the last

two rows(Le., the diagonal entries of the N2 matrix) wl be given by the suin of the P

values of the two beam segments joining at the excitation node and the response

node, respectively.

b. The o dia.gonal entry ;.jl of Za will be the negative of the sum of the P'

values(Equation 2.31) of all uncracked columns joining ith and (i+l)th :foors.

= 0 if all the colunrns between those fdoors are cracked. ztj = 0 for n j a i+2

and 2;l = zji. ZQ is, hence, a tridiagonal symm-neti-c matrix. If any one of the columns

adjacent to the i th door is cracked, then z; for 1' i-n, n < j n+k. (Le., the

entries of C= ), will be zero except for that (those) j value(s) which correspond(s) to

the deflection(s) at the crack(s) nearest to the ith 'oor, in which case z; is equal to

the negative of the P' value for the cotum.n segment which links the ith floor to that

crack. If none of the colu.ns adjacent to the ith door is cracked, then ith row of C.

is zero, and the i th row of Z is unchanged relative to Z, of the no-crack. k =0, case.

c. zq = 0 for 1 9 i - n, n +k <j n +k +2, (the entries of N), where k =k.+;-k

, unless there is an excitation and/or a response station on any colun(s) adjacent to

the ith fdoor> Ln the latter case, zij is given by the negative of the P" value for the

column segment Unking the ith door to the excitation or the response node.

d. ;,.+l for n°< i n+k, (the entries of D,) will be zero if there is no other

crack between the (i-n)th column crack and the door level above this crack-

Otherwise, z,.,+, will be equal %o the negative of the P value for the column segment

which links the (i-n)th and the (i-n+l)th cracks.

e. ;j. 1+1 for n+.+A <i n .k (the entries of D7 ) will be zero if there is no other

crack between (i-n-A-k)th girder crack and ihe wall to the right of this crack.
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Otherwise zi.j+ I wil be equal to the negative of the F' value for the girder segment

whicb.links the (c--ac)th crack and the crack on its right.

Hence, D: and D7 are diagonAl if at most one crack e.dsts on each bea.

element. If more than one crack exists on any column. or girder, then D, and/or D7

are accordingly tridiagonal syrn etric matrices.

f. z. for n <i i :! n Lk, n+k < j _- n +k +2 (the entries of N1) will be nonzero

only when the corresponding crack is neighboring an excitation or response node, in

which case zyj is equal to the negative of the P' value for the beam segm-.ent Uking

the crack to the excitation or the response mode.

3. To estab[qh the Xmatr_ .

X consists of the coeicients of rotations yj' in equations such as (2.50), (2.53)

and (2.55). A square sub=atr1x:&) in Equation (2.58) corresponds to rotations of the

rae joints on the k th wall (Figure 8).

a. The diagoa! en %Z -e amet) ofao -'or ,

-goal ent7 of which stems from the 'tnetic ecuation for the

4th door, will be given by the Q' value(Equatior 2.31) of the colurnn (colur..n segment)

under the frame-joint node n(k -1)-i minus the Q value of the col=-r (coiunn

segment) above the same node. If there is no cracked colurm on the hth wall, then

= Q'.(-i )+ - Q'nb-0)i i for i=1....n-1 and..) Q' .

b. The of-diaonal entry _%.. = -, (-)+i i , that is, the negative of the ,7'

value for the colurnn above node n(,k-!)-i for =. . - if the column of the kth

wall between the ith and (i+l)th fdoors (Le., the cournn above node .(k-)-i) has

neither a crack, nor an excitation, nor a response station on it. Otherwise -%.i = 0,

and. that entry on the ith raw of F. or L , which .orresponds to the rotation of the

crack node or the exitation or the response node nearest to and abore the node

n(k-1)--t will be equal to the negative of the Y' value of the column segzent Unm.ng
the node n( -l)+i and the said crack, excitation or response node. - )= 0 for

. . . .. . . . .. ..... . ........... e.... . . . . ... .) 0 f o r
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j;-i +2 and =,209 ) for i j. (The entries of each are numbered

independently of the other submatrices.) :& ) is thus diagonas if each colu= of tne

kth wall has at least one crack. Othe- wse lt is tridiagonaL )& ) "s unchanged relative

to )& ) of the no-crack (k =0) case if there is no crack on the k th waeL

If the column below node n(k-l)+i is cracked., or has an excitation or a

response node, then that en-y on the ith row of F, or L 1 which corresponds to the

rotation of the crack node, or the excitation or the response node nearest to and

below the node n(k -1)-k will be equal to the W' value of the column segment Unk-ng

the two nodes. Except for this and the above nentioned cases, entries of F, are zero.

c. The E matrices in Equation (2.58) couple the crack modes with the raie-joint

nodes. Rows n-;-! through +k of X(Le., E , H and LI matrices) are fled in as

foUowe.: The entry on the matrix colu-n which corresponds to the rotation of the

node on the left (or lower) side of the crack, at which the shear continuity condition is

being written. is equal to the ?' value of the gL-der (or column) segment whi-ch links

this node to the one on its left (or below it). The entry corresponding to the node on

the right (or upper) side of the crack is equal to minus the Q' value of the segment

linking this node to the node on its right (or above it). These two entries are within

the submnatrix H, (or Ej). The entry corresponding to the node on the left-hand side

of (or below) the left (or lower) crack-node is equal to the W' value of the segment

inkLag these tw,o node3. }fially, the entry correspondirg to the node on the right-

hand side of (or above) the right-side (or upper) crack-node is equal to the negative of

the W' value of the segment linm.i the two nodes. These two entries can be with7in-

the subrmatrices E. H or LI depending on whether there are one or more cracks on a

girder (column) and on whether the excitation and. response nodes are neighbors with

any crack. E,, 0 if there is no crack on the kth wall; r.,, 0 if there is no crack on

any of the girders adjacent to the kth wall
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d. The diagonal entries of Li are given by the di. erence of the Q values of the

two beam segments on the left (or lower) and right (or upper) side of the excitation

or response nodes. L: is a diagonal submatzri if the excitaticn and response nodes

are not neighbors. Only those entries of L2 corresponding to the nodes nearest to the

excitation or the response node are nonzero and are given by the F value, or the

negative of it, depending on whether the node in question is on the left- or right-hand

side, respectively, of the excitation or the response node.

4. Cor-ections for the -eneral case:

If beam properties are not uniform throughout the frame (each colun_ or girder

still has uniform properties within itself), then the following corrections are

necessar-.

a. Multiply each t-erm in the U matrix, except the A ternms, by the corr. esponding

71 value, that is, Q; and W by U21.

b. Multiply each term in the List r rows of the X m.atrix by the cor-r.espcnding
i7 value, that is, IQ' and W,' by 1;g.

c. Multiply each term in the frst n rows of the Z matrix by the corresponding ?7,

value, that is, P2 and P ' by 77, and g, by 17,.

d. Multiply the i-h row of Z n-1 .i 2, by X, r---1 where I is the

number of the beam. element with the crack for which the i.th row represents the

shear continuity condition, or of the beam ele.-nt with the excitation or the

response station.

The above procedure will now be illustrated with -m example.

E.- The three matrices will be written fcr the frame in FlIgure 11.
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a. F.-= without cracks (7g. Ila) with differen~t bea-m pr--per-ties (each bea. is

'II0+7%%+7IQ 0 7731 #57 71 7MFj

0 77m Qz+r7siQs 0 77s Rs 0 77=;r2

0717 77M QV-74 1Q4 -7731 Q5 774t ;4 00

oJ g ~ 7 1 ; 47 4 4 r I Q 0 C

071Y 0 0 77ii(QP+Qs) 0

Y2P7 0f Y.0

7 z 13? Pic -1.!P+7.P .- 79 1743-P4' I - 17.Pi'

4-P4 '7P+7,P4;-- 0 72P2

7 - - -
-II 0 01 Pt 9

X22 0 (PPcj

y '2VS Y4' fY

17izQI*'-nzQIo' 0 1?772QI'-7.Q 4' -7742W4  ' i12~ ' -,J2TQ

0, 0 0 j~Q' 0

-~ -yWi 0 0 [0 Qo-a

-A _ --L
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where, for convenience, the rotatioms and the de"ectiCas at the nodes are wri.tten

abvra the corresponding colunr cf the '_-atices. It is noted that, fcr exa_.le,

7g = 71 1 and 1S2 = 7712 (Eq. 2.51), that is, the bea.-r segments 9 and 1 a e the

seg=ents of the sa_.e colu=n and. hence, have the sa. e properties.

b. Fr-=e with two cracks (Fg. j1b). The fr=e is mow assuzed ffztor. L1

properties except for the lengths of the individual colu== and girders. Hence,

ri 1 and L - =-=L-. Matrix U is obtained as

II l

Qi+Q:c+QS 0 0 010 0 I W'a 0 71  )r,,

I L
0 Q2+Qd 0 wo I0 0 10 0 .1V

0 I-Q+Q 7 0 T. 0. 0

0; 7/ 0 0 0 0 0 Y 0 0 0
I I

0 0 +,+ 0 I 0 0 0 0
I I

0 0_ . 1 0 0 0 0

I0 0 0
70 0 0 0/ 0 " 0 Qa-: I A A510 0 W 0 Q-0 0 0 0 0 0U- I

0 0 10 0s 0 0

0 0 0 0 Q 09
S 0 0 0 0 0 0 0 I +

WW ; 2  0 0 0 0 0 0 0

(2.37)
It =ay be noted that the ftrst .r eleents L the second row of U are the saM.e -S

those n the second row in Equation (2.54) (except for the factcrs r,,,j). This r-w Ls

unchanged since mode 2 is not linked to any crack mode. The last two rowvs 'and two

coluns in Equation (254) are enlarged by LL-ng .ith zeros and again appear as the

last rows and colln in (2.57). If the beas- had diferet properties, then ..h

ter= in U would be multipied by the corresponding 77 value except the ter-s

A e I~-~. In the A4 ter--.. the sensitivity =u.=bers. 91, are subscrioted by the

A|



40

original number of the column or gir-der on wb-ch the corresponding cracks are

located. Hence, C4. for instance, re.fers to the crack located cn the coluan numbered

4 in the uncracked lrame ( Igure 11). It is also noted that Q4 , W.,. P4, etc. for the

cracked ram'=.e have different values fron" the ones in the no-c-ack case. The Z and X

matrices of the cracked frane are subsequently conjugated as:

r -9- ," 0 -P7' 0 -P 1, - 0

0 P2+P A51 -P4' 0 0 -

-P7 -P4 IP4+P7 0 0 0
0 0 (2,~s)

Z=0
0 0 0 0p+pa 0 0

0 0 0 I.P+P 0
1

-PIC -P2 0 0 0 P2 PQC

Q 0Q , 0 !Q' -7 00 W

0 Q2 ' 0 Q4' 0 Y 4  0 0I 0 YI
0 - ,-y _ _--- ---

17' W' Q -Q'0 0 0 0

a, 0 I- 0 0 jQ-' -Qz' 0 0

-Y: 0 0 0 0 0 0 0 Q '-Q' 0

l a' -' Q0 0 0 0 0 0I 0 Q '-Q'

where in Ecuaton (2.66) and Equation (2.69) are basically the sa-.e sL-:ce there is

no crack on the ftrst wal. The terr';_s -;}4 and W4 in * P in Ecuation (2.55) are

replaced by zeros Ln Equation (2-09), since nodes 3 and 4 are no longer linke

dLrectly. As the column under the node 4 is cracked. the node 4 is now IL--ked to the
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mode 7' by the column seg,-.ent 4. There-fore, P/4' appea'rs on the second r w and,

second columnr (Which co-responds to '97) of Fc. The thizd row of X redects the

continuit of shear at the colun crack in Figure 11b. The lower c-ack-node 7 is

linked to the node 3 by the column segment 7 and the upper crack-node 7 is linked

to the node 4 by the segment 4. Q' and W' values are accordingly placed on the thL-d

row. The construction of the matrices for the cracked ra-ne is now complete.

Numerical results for the frame will be given in Chapter 3.
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CHAPTER 3

THE MODAL FREQUENCY THEORY OF FRACTURE DAMAGE DIAGNOSIS

The modal frequency theory was introduced by Ju et al [7,8] to utilize

the measurements of pre- and post-damage modal frequencies in detecting and

identifying fracture damage. Each pair of fracture characteristics (7,e)k,

the kth crack intensity and location, is defined by a damage function

(y,e) = Gk(Ri) (3.1)

where R. = I - is the modal frequency variation, wi and wui are

respectively the post- and pre-damage frequencies of the ith mode. For

k-number of cracks, therefore, (2k + 1) number of measurements of frequency

variations are needed for diagnostic solutions. The solution of Equation

(3.1) yields the diagnosis of the fracture damage in the structure. The

application of the modal frequency theory to the diagnosis of a single crack

in simple structures was treated by Ju et al [7,8] with the matrix method.

The method in general, for a structure of N-beam elements with k-cracks,

requires the solution of a (4N + 2k) by (4N + 2k) matrix. The algorithm

becomes excessive for structures of large number of beam elements and/or

cracks. The numerical difficulty was overcome with the introduction of a

generalized theory of circuit analogy. The theory and its application to

multiple-crack problem and to complex planar structure were presented by

Akgun and Ju [9,10] and summarized in [113. The basic modal frequency

theory, used alone, will encounter uncertainties, arising from (1) frequency

crossover, (2) Inadequate measurement of change in modal frequencies and (3)

,./
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closely packed cracks. The uncertainty of frequency crossover can be

illustrated with two modal frequencies, wi and wj (without loss of gene-

rality let wi < w,) at undamaged state. After crack occurs the new modal

frequencies are corresponding Zi and -Z. If the crack occurs near the

inflection point of the ith modal shape but if the point happens to be near

the maximum moment section of the jth modal shape, -i may not differ too
L1

much from wi" It is conceivable that, for the new modal frequency, we may

record . < Zi" In that case, not knowing the actual damage configura-

tion, the diagnostic assemblage of frequencies may well confuse -j to be

the new frequency of the ith mode and -i to be the new frequency of the

jth mode. The phonomenon is a frequency crossover; the diagnostic result

may be disastrous. Such phenomenon is most likely to occur in complex

structures, for which there are pairs of modal frequencies with close

values. The problem of frequency crossover cannot be handled determinis-

tically by the modal frequency theory. But the transmissibility theory

presented in the saqual should alleviate this very uncertainty. The rest of

the chapter will address the uncertainties of multiple cracks, which can

only be resolved by probabilistic means. The uncertainties can be ade-

quately illustrated with a simple beam structure with k-number of cracks.

A beam with k cracks can be represented by k + 1 circuits joined by

resistors simulating the cracks. The unknowns in the T-circuit analogy are

the moments (currents) at the cracks and at the ends of the beam. Hence,

there are k + 1 unknowns. On the other hand, the unknowns in the fl-circuit

analogy are the slopes at the ends of the beam and at the cracks. There are

two unknown slopes at each crack. Hence, the-order of the system is larger

with 11 circuits. The T-circuit analog derived in Section 2.2.1 is found to

be more suitable for multiple-crack analysis. This section develops the

/, mm mm m I I m mlIm~mm i m ~~,,,,m m • ,
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characteristic frequency equation for the general case, establishes the

conditions under which multiple cracks become equivalent to a single crack,

and illustrates the inverse problem with k = 1. The beam i-s undamped and B

and all other variables are, therefore, real.

3.1. Cantilever Beam with Multiple Cracks

Figure 12 depicts the analog circuit for a cantilever beam with k

cracks. Continuity of moments at the cracked sections is preserved via the

continuity of electrical currents through the "crack resistors", -1/ri. The

order of the system of mesh current equations is k + 1. Namely,

(ZI + Z Io)MI - Z10M2 + E11 : 0

-Zi-loMi-1 + (Zi-I + Zi-1,0 + Zi + Zio - 1/ri)Mi - Ei-1, 2 + E1,1 : 0

i = 2,...k

-ZkoMk + (Zk + ZkO + Zk+L + Zk+', 0 - i/rk)Mk+l - Ek2 + E k+I,1 =0

(3.2)

From Equation (2.21), the analog voltage sources Ei,j I are:

E.i T-j 0 0 ... 0 0 0 Yl

E12  S.j 0 0... 0 0 0 Y2

E21  -S T 0 ... 0 0 0 Y3

E22  -Tj Sj 0 ... 0 0 0 y4

Ek2 0 0 0 .- T S 0 Y
Ek+1,l 0 0 0 ... 0 -S +I T4+j 'k+I

.. .. , .. L
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where Yi is the deflection of the ith cracked section and Yk+I is the

deflection of the free end. These deflections are solved for by imposing

the shear boundary and continuity conditions. That is,

Vi2 = Vi+',I , i = 1,2,...,k

Vk+ 1 , 2  0 (3.4)

Lt L:
A4 I I
A

~LL

l L

,4

! - I ' _____"____
-
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-

_

Figure 12. Cantilever beam. (a). With k sy=etrical c-ack .
(b) Equivalent fracture-binge =cdeL (c) T-circ:it nalog.

-ASL
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where the first subscripts refer to the numbers of the elements within the

beam and the second subscripts I and 2 denote the left and right ends of the

corresponding element. Substitution of the last two equations in (2.17)

into (3.4) yields

(1/h) Zy = Xm (3.5)

where y and m are vectors of deflections and mesh currents, and Z and X are

square matrices of order k+I given by

SI +S T2  0 0 ... 0 0

T2 S2+S3  T3  0 ... 0 0
O 0 T3 S3+S T4  

0 T k+lI

L 0 0 O...Tk+'I Sk+1.

(3.6)
rT1  -S i -S Ti  0 ... 0

o T -sI -S T .

o o T -S -s .

T
-S0 k+1

S0 ..

Hence, Z is a tridiagonal symmetric matrix and X is an upper triangular

band matrix with a band width of 3. y can be solved for from Equa-

tion (3.5), provided Z is non-singular. That is,

y = hZ-iXm (3.7)



Substitution of (3.7) into (3.3), and then the result into (3.2) along with

the analog resistances from Equation (2.20) gives

(XTZIX - U)m = 0 (3.8)

where

S1  T 0 ... 0 0
TI  S1 +S2+2e1- T2

0 T2  S2+S3+28S ....

* . . .. . TkTk

0 0 0 ... Tk Sk+Sk+1+ 20kJ

with 8. being the sensitivity number for the jth crack given by Equa-

tion (2.40). o9 is based on the total length of the beam.

For non-trivial solutions of (3.8), the determinant of the coefficient

matrix, which is symmetric, must vanish, yielding the characteristic equa-

tion

det(XTz-Ix - U) = 0 (3.10)

When the crack spacings {ejl ana sensitivities J8jI are known, the natural

frequencies can be comlputed from Equation (3.10). In computing the matrices

in equation (3.10), the variables Si, Ti, S'i, T' i (Equation 2.18) per-

taining to the ith beam segment are computed using eiB = (Li/L)s where s is

based on the total length of the beam.
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3.2. Damage Diagnosis with a Single Crack

Damage diagnosis using the present model is accomplished with the

knowledge of frequencies after the damage has occurred. Since the charac-

teristic equations of structures are in terms of dimensionless charac-

teristic values {B from the measured frequencies {8i can be computed from

B L ( (3.11)

When three measurements of frequency are available for the case k =

(single crack), exact location, e, and severity, 9, of the crack can be

determined. The procedure will be illustrated with the cantilever beam

problem developed in the previous section. The coefficient matrix in equa-

tion (3.8), with k I, is of the form

XTZ - [hit h2  ] H(B,e,@) (3.12)
x~-I -U [h 12 h22-28 B

where the {B values in equation (3.12) are the post-damage values computed

from equation (3.11). The damage characteristics e and 9 are to be deter-

mined from the determinant of H, which can be written as

det[H(s,e,a)] = det[H(s,e,O)] - 2eeh1 : 0 (3.13)

where e = LI/L is the normalized crack location. It is noted that when s

assumes the pre-damage values Bu, det[H(B,eO)j is equal to 0; that is, this

term is the characteristic equation for the undamaged (9 = 0) beam. There

are three equations emerging from Equation (3.13) for the three known

characteristic values. A numerical code for damage diagnosis has been

&A ii
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developed in which e is varied through the range (0,I). a is computed, for

a given e, using the first known characteristic value in EquAtion (3.13),

namely,

9(e) = detFH(B(1)'e.O)l (3.14)

where the superscript on B denotes which characteristic value is used. Then

with the second known characteristic value, B
(2)

det(H(0( 2),e,9)j = 0 (3.15)

where the value of 8 is now substituted from Equation (3.14). A zero-

searching routine is used to find the roots of Equation (3.15) which, in

general, yields multiple solutions for e. B(3) can then be used to locate

the crack. With e known, 6 is computed from (3.14).

In the case when the beam deviates somewhat from the Bernoulli-Euler

theory or when the material properties are uncertain, computing {B from

Equation (3.11) may not be suitable. The knowledge of modal frequencies

prior to the damage is then necessary. Since w and wu are proportional to

2 and 2u respectively, where w u and Bu are the values for the pre-damage

structure, and w and B are the post-damage values, the following relation

holds:

1/2
B =Bu W (3.16)

It is assumed in (3.16) that the proportionality constant between wu and

0 u does not change after the damage has occurred. The characteristicBu

equations do not involve any material properties and Bu can be computed from
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the characteristic equation for the undamaged structure. With u and

measured in the field, {Bj can then be computed from Equation (3.16) and the

above procedure can again be employed to determine e and a. Only the beam

length L, the Poisson's ratio v, and the slenderness ration (b/L) are

required to determine the actual crack location L., and the crack depth a

(Equation 2.40). Since v is nearly the same for most metals, the theory

becomes independent of the specific material of the structure if the

material is a metal, if the damage is presented in terms of LI and a, and if

{B are computed from Equation (3.16). The theory is totally independent of

the material properties and dimensions if the damage is presented in terms

of e and 9. The data are more conveniently presented versus the relative

frequencies (/wu ) or the relative frequency changes (1 - w/w u) rather than

versus the absolute frequencies, whether {(B are computed from Equa-

tion (3.11) or (3.16). In this report, relative changes are chosen as the

means to convey the numerical results.

In practice, the responses of structures deviate from the Bernoulli-

Euler theory. It is therefore more accurate to compute {Bs from Equa-

tion (3.16). Equation (3.16), in effect, adjusts the parameters of the

specific structure such that the structure frequencies match those predicted

by the Bernoulli-Euler theory.

In practice, especially for structures whose frequencies are close to

each other, the reduction in a certain frequency due to damage may be small

while the reduction in the next frequency may drop below that of the former.

This phenomenon is called crossover. When crossover occurs and when one is

not aware that it has occurred, the correspondence established between the

pre-damage and the post-damage values of the frequencies will be in error.

If, in such a case, one used Equation (3.16), which involves the ratio of

the pre- and post-damage values of the frequencies, the computed charac-
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teristic values will be incorrect. On the other hand, if Equation (3.11),

which involves the structural properties, is used, a knowledge of the pre-

damage frequencies is not required. Hence, it becomes irmnaterial which

pre-damage frequency a certain measured post-damage frequency corresponds

to; the important point is that there are some frequency values available

wh'h satisfy the post-damage characteristic equation (Equation 3.13). If

the structural properties are uncertain, they can be identified by measuring

one frequency prior to the damage. That is, the constant K in the relation

Bu = K4u can be determined by measuring one wu and computing the corre-

sponding su from the pre-damage characteristic equation. The same constant

can later be used to compute all the needed post-damage frequencies W by

means of B = Kv,. In this case, however, the R. values cannot be used toJ

present the data, since the ordering of the post-damage frequencies accord-

ing to the magnitudes of their values does not correspond to the pre-damage

ordering, unless the fact that crossover has occurred is known.

3.3. Uncertainties of Closely Packed Multiple Cracks

Under certain conditions, the effect of multiple cracks is not dis-

tinguishable from that of a single crack. In this section, these conditions

are investigated. For this purpose, equivalence of two cracks on a simply-

supported beam to a single crack is first established analytically. Numer-

ical results for larger numbers of cracks are then presented. It is esta-

blished that, when equivalence holds, solution to the inverse problem of

damage diagnosis cannot differentiate between single and multiple cracks.

Figure 13a depicts a simply-supported beam with a single crack and i~s

T-circuit analog. The mesh equation together with the Equations (2.20) and

(2.21) yield
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-(SI + S2 2 288)M - (Sl+ + S2 ,) y/h = 0 (3.17)

where M and y are the resisting moment and deflection at the cracked sec-

tion, respectively. The continuity condition V12 = V21 at the crack allows

y to be solved for in terms of M. The characteristic equation for a beam

with a single crack is thus

(S + s) 2  

(

(SI + $ (S + S2 + 2e) = 0 (3.18)

For the case of two cracks, with reference to Figure 13b, the characteristic

equation is obtained in the form of Equation (3.10) with

LT -s-SZ I +S2  T 2~J

(3.L9)

U S "S+S 2+26,1B T 2
T 2  2+S3+2e201

When it is assumed that the spacing between the cracks is sufficiently

small, that is, e2 = L2/L = E; the following approximations are obtained.

cosh e2  I + 2 sinh e20 6 B + 6

(3.20)

cos e2  -:3 sin e.B -
2 2 2

It then follows from Equation (2.18) that

2 T L - 2 (3.21)

2 3' 2 3' s2 =r2  eB'

After (3.21) is substituted into (3.19) and the necessary operations are

performed, the matrix of coefficients in (3.8) is obtained as
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z- Ix -U = d '-2 (S1 + s 3) ~1 1 h.K hIl (3.22)
d (s) i 12 22j

where

2d =S I s3 + IS + 3)(co) +

hi 4 - r + 19IB

11 (2 +S-i S3) + [ (S.1)'S3 + 4S .1 -S (S1
2i~

12 S3 + Sl$)-(j±~

h22 = 2 S1S ) [ IS., (S) +2 4S + s' I 4$ 3 .(S3 + 292s) (3.23)

-4:

~ZLI (zNy

Fg~.r~ 1.3. py-suppoited bea=i. a) Titia a sirgie crack a.nd its circt.it aog
b) Azaog cir-cuit for a sipW-iuppcrmad bea.-m -wnt! t'ro cracks.



The above analysis is valid at points where S-, S S3, S. are of smaller

order of magnitude than /_s. The characteristic equation for the t v crack

case is thus

det(xTz- x - U) " (Si + S
' 2

(3.24)

(S.1 + S3 )[S-1 + S3 + 2(e1 + 02)a] } + 0(i/EB) = 0

For small values of e2, a comparison of Equations (3.18) and (3.24) reveals

that S.1, Sr,, S2, S2 , in Equation (3.18) are nearly equal to S 1 '1 S3,

S'3, respectively, in Equation (3.24). The difference between the cnarac-

teristic equations for one- and two-crack cases is of the order of the pro-

duct e2B. (The difference is proportional to B and is, therefore, larger

or higher modes.) The effective sensitivity number for the two cracks

approximates, as shown in (3.18) and (3.24), the sum of the individual

sensitivity numbers, that is, 0 = O1 + 02. Thus, closely spaced multiple

cracks, in general, cannot be differentiated from a single equivalent crack.

Numerical data for different crack configurations indicate the same result.

Similar results are present for a clamped-clamped beam. Numerical

results for a cantilever beam indicate that the first few characteristic

values of a beam with closely spaced multiple cracks are, in general, close

to those of a beam with an equivalent single crack whose sensitivity number,

9eq, is aporoximately equal to the sum of the individual sensitivity numoers

of the cracks on the original beam. Furthermore, the location of the equi-

valent crack is generally within the region where the group of cracks is

?ocated. In conclusion, equivalence of cldsely spaced cracks :o a single

crack implies that, in the process of damage diagnosis, it is imcossible to

distinguish between closely spaced multiple cracks and a single crack.
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Figure 14 typically illustrates the lower limit of crack spacing for a

cantilever beam when uniformly spaced multiple cracks become, as a whole,

indistinguishable from a single crack. In Figure 3, as in subsequent

illustrations, each crack assumes a sensitivity number 9 of value 0.174

which is taken to be a major crack in a beam of slenderness ratio of 0.05

(corresponding to a relative crack depth 7 = a/b of 0.6). The equivalence

is based on equal values in the first two modal frequency changes and a

tolerance of 0.1% in the third mode characteristic values, i.e.,

(3) _ B(3) 0.001, where the subscripts eq and ac denote the• eq - ac I -

values for the equivalent single crack and the actual damage configuration,

respectively. If the tolerance level in B(3) is increased, the curveseq
in Figure 14 will shift upward. As the number of cracks increases, they

must be more closely spaced to be representable by a single crack. The

lower limit of spacing depends on where the group of cracks is located. At

the built-in end and at e1 = 0.6, more widely spaced cracks can become

indistinguishable than at e1 = 0.1. The lower limit of spacing is dependent

also on i values. For example, when eI = 0.1, k = 2 and = 1 .2 = 0.01

(corresponding to y = 0.2 for b/L = 0.05), the smallest crack spacing for

whic'h the double-crack damage becomes indistinguishable from a single-crack

damage is e2 = 0.025.

Figure 15 illustrates the relative frequency changes, Rj, for a canti-

lever beam with two closely-spaced cracks of 9 = .174 each. A very similar

set of curves is obtained if {Rj is plotted for a cantilever with one crack

of eeq = .348. For any given number of cracks on a cantilever beam, the

largest decrease in the fundamental frequency occurs when all the cracks are

groupd at the built-in end. On the other hand, for e .3, the greatest

change in the second frequency is observed at a location 4). Such infor-

mation can be utilized to set rough guidelines for damage diagnosis.
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Figure 14. Lower limit of crack spacing for multiple cracks.
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Figure 15. Relative frequency changes for a cantilever with two cracks.
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It is clear that probabilistic methods must be resorted to in diagnosis

of multiple cracks when an insufficient number of frequency measurements are

available. Nevertheless, some qualitative conclusions may be reached wizh

the help of Figure 14 which is independent of material oroperties. In par-

ticular, when a solution has been obtained for a single crack and a decision

has to be made between a single crack and a group of closely-spaced less

severe cracks, one may argue that formation of a single crack is more

likely. In other words, a small mode I type crack is likely to propagate

under bending rather than other cracks forming nearby. On the other hand.

one severe and several minor cracks may exist distributed along a structure

in which case the objective is to be able to diagnose the major crack.

Guidelines may be established qualitatively based on the frequency chance

curves for a cantilever beam, Figure 15, in which case we may prooose that

a. If R is considerably smaller than R2 and/or R then the (major

crack(s)) is at a normalized distance greater than -0.45 from the built-in

ena (Fig. 15). In addition, (i.) if R2 is considerably larger than R the

crack is located around 0.45-0.65 relative to the built-in end (see

Section 6.0 below); (ii.) if R3 is larger than R2, the crack is at a dis-

tance greater than -0.7 or; (iii.) if R2 and R3 are comparable, then there

may be one major crack at 0.65-0.70, or two major cracks one each in the

peak regions of the R2 and R3 curves.

b. If R2 is significantly smaller than both R and R3 , the crack is in

the region 0.2-0.3, or there may be a (major) crack at 0.2-0.3 and another

(major) one at a distance greater than 0.8, the latter being more likely if

R3 is greater than R1.

c. If R is significantly larger than both R2 and R3, and R2 and R3

are rather small, the crack is at 0.1-0.2.
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d. If the values of R, R2 and R3 are comparable, several possibil-

ities exist. To list a few, there may be a number of cracks distributed

over the beam (Section 3.5 below); the crack may be at 0.35-0.40; or there

may be a crack at 0.0-0.3 and a few others at locations greater than -0.5.

In the present study, only the first three natural frequencies are

assumed measurable. The peak locations of R2 and R3 curves in Figure 15 are

weak functions of 9 increases. For example, as e is increased from 0.01 to

0.50 (effective value for a few closely spaced cracks), the peak of the R2

curve shifts from tbe location 0.530 to 0.563 while the second peak of the

R3 curve shifts from 0.710 to 0.760. Similar guidelines for different

structures can be established based on minimum and maximum frequency changes

although the procedure may become tedious for more complicated structures.

3.4. Uncertainty From Inadequate Measurements

To illustrate the uncertainties involved in damage diagnosis when the

three R. values are comparable in value, the following relative frequency

changes are assumed to have been computed from the measured frequencies of a

cantilever beam: R = .0579, R2 = .0586, R3 = .0591. It is to be determined

whether the damage mainly consists of one major crack.

The (actual) characteristic values are computed from

s(J) = B J ) (I - Rj)" / 2

ac u -

where {18('f are the undamaged characteristic values, the first three of

which for a cantilever are (1.8751, 4.6941, and 7.8548). From (22), in

particular, (3 ) = 7.6192. The first two actual characteristic valuesac

yield one solution for a single crack located at eeq .372 with 9eq = .128

(corresponding to a relative crack depth of 1 = .55 for a slenderness ratio

of b/L = .05). These equivalent values are then used in the forward problem

. .. .. . -j ----------- A
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with k = 1 eqs. 3.6, 9, 10 (10, 11, 14., 16) to determine the third charac-

teristic value due to the equivalent crack. The computation thus yields

(3= 7.6176. Then, a(3 ) - (3) = .0016. If we assume that theeq ac eq

accuracy in Sa3) is not better than t.0016, the equivalent single crack

solution may be accepted as the true damage diagnosis. On the other hand,

the given R. data were actually generated in a forward problem with ten

cracks of equal intensity (9 was taken to be .01 Fi.e., 7 = .21 for all the

cracks) located such that e1 = .001, ei = .094 for i = 2,3,... ,10. Thus, in

this case, even though the actual and equivalent a(3) values match closely,

a firm diagnosis cannot be reached.

3.5. Effect of Minor Cracks Associated with a Major Crack.

For the purpose of illustrating the effect, it is sufficient to use the

forward problem formulation in which the locations and intensities of the

cracks are known. The characteristic values s(J ) are determined from

Equation 13.10). The relative frequency changes are then determined from

the characteristic values, namely,

Rj = (3.25)

a. First the analysis will start with one crack (Fig. i6a), i.e.,

k = 1, at e = .54 (in the peak region of the R2 curve, Figure 15) with

9 = .174 (y = .6). The relative frequency changes are then computed as

RI = .029, R2 = .137, R3 = .014.

b. Now, in addition to the crack in part (a), there are five more

cracks of intensity 6 = .0026 (y = .1) each, distributed on the cantilever

such the eI = e2 = e3 = e5 = .1, e4 = .24, and e6 = .09 (Fig. 16b). The

actual characteristic values are computed as 3(1) = 1.840, 8(2 ) = 4.351, and
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Figure 16. Cantilever with one and six cracks.
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7.768 from which R1  .037, R2 = .141, R3 = .022. If these values of

R. were obtained from actual measured frequencis from which the damage were

to be diagnosed (the inverse problem), $(I ) and B(2 ) are used to find a

solution for a single crack, which is (ee, 8e) = (.51 .183). This sinaleeq eq
crack would produce a(3) = 7.845 or R = .0024.

eq 3eq

c. The same case as in (b) except 9i are changed to .01 (y = .2) with

the major crack remaining the same, i.e., 94 = .174. Hence, the deoths of

the minor cracks are doubled. The corresponding frequency changes in the

forward problem are R = .058, R2= .151, R3 = .043. If the same RI and R2

are in turn used in the inverse problem of damage diagnosis with k = 1, we

obtain (eeq, I ) (.47q .224), B 3eq = 7.830, R3eq = .0064.

The above cases indicate that the value of R2 did not change signifi-

cancly wnen minor cracks were added to the beam. If this were an actual

damage diagnosis problem, in which case only {a(j) and 4R.} would be known
J

from the measured data, then a decision would have to be made about the

computed (ee, eae). In case (b), R3 = .022 whereas R3eq = .0024. In cas

(c'. R3 = .043, but R3eq = .0064. Hence, based only on comoarison of R3ec

with the actual values of R3, the solutions for (e eq, 9 eq) would be re-

jected. Nevertheless, the equivalent damage parameters in both cases

closely identify the major crack located at the distance of .54 from the

built-in end with 0 = .174. When there is no minor crack on the beam, as in

case (a), (e eq, eq) would be computed as (.54, .174). The effect of the

minor cracks on (e, e9 eq) is thus seen to be small. Hence, it is concluded

that, when the given R. values exhibit a pattern such as in this example,

the discrepancy in R and R or in 8(3) and 8(3) can be ignc ed3 3eq ac eq

when the interest is in diagnosing the major crack.
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3.6. Peak Modal Response

It is to be demonstrated that, when multi'ple cracks exist on a beam, a

crack which is located in the peak region of an Rj. curve affects the corre-

sponding frequency, wj, the most.

a. Given k = 1, el = 0.001, 91 = 0.174. The frequency changes are

computed as (the forward problem) R1 = 0.234, R2 = 0.162, R3 = 0.125.

b. A second crack is added to case (a) such that e2 = 0.546 (i.e.,

near the peak region of the R2 curve of a single crack as in Figure 15) and

= 0.174. Then R, = 0.246, R2 = 0.272, R3 = 0.162.

c. A third crack is added to case (b) such that e3 = 0.185 (i.e., near

a peak region of the R3 curve of the single crack in Fig. 15) and e3 = 0.174

(parameter values in cases (a-b) are preserved]. Then RI = 0.247,

R2 = 0.273, R3 = 0.167. In case (b), the greatest decrease relative to case

(a) occurred in the second frequency, whereas in case (c) it was the third

frequency that suffered the largest decrease relatlve to case (b) although

this decrease was insignificant for e3 = 0.01. The example iTlustrates the

effect of crack location and intensity on the frequencies and confirms the

usefulness of curves such as Figure 15 to diagnosis of damage as outlined in

the guidelines presented earlier.

It should be noted that the sensitivity number e is a measure of how

sensitive the natural frequencies are to given crack depth and location as a

function of the slenderness ratio. Oecrease in natural frequencies is

greater for larger values of e. Between two cracked beams with the same

crack location and relative crack depth, e for the more slender one will be

smaller giving rise to smaller R values. For example, for y = 0.6, (and

V = 0.3), 8 = 0.0697 when b/L = 0.02 and 8 = 0.0174 when b/L = 0.005. Thus,

in practice it is relatively harder to diagnose damage in slender beams. On

- " -d - --,., - --- ML ,
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the other hand, two beams of the same slenderness ratio and Poisson's ratio,

but o different materials, experience the same relative decrease in fre-

quencies for the same crack location and relative depth.
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CHAPTER 4

TRANSMISSIBILITY THEORY OF DAMAGE DIAGNOSIS

In this chapter, a new method is proposed for diagnosing damage in

large structures. The method utilizes the changes in transmissibilities at

several locations, called the response stations, on the structure. The

method is developed by computing the transmissibility changes for known

crack configurations and comparing the magnitudes of the changes at differ-

ent response stations. The equations derived in Chapter 2 through the

electrical anaTogy of a damped frame structure are used in the computations.

4.1. Transmissibility and Relative Transmissibility Change

In this study, transmissibility is defined as the magnitude of the

ratio of acceleration at a response station to the force applied at an arbi-

trary location on the structure (Fig. IT). Namely,

T ir F(4.1)

where yt is the complex deflection at the response station of interest.

When the force is sinusoidal, that is, F=F me i , the deflection becomes

Yt = ye iwt = ymel[w t-0 (4.2)

where y is the complex modal shape, ym is the amplitude of transverse de-

flection, and o is the phase angle. ym and o are functions of location and

excitation frequency. o is zero for an undamped structure. Transmissi-

bility for sinusoidal excitation is then given by

..... ... ... .. .. .. .... .. .. .. ... . .. .S A
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2 5 ! 14
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4 7 10 13

Figure 17. A three-story four-sean L-ame.

The a.plitude of defeotion, Ym. at the response station can be co.puted -or-

Equation (2-63) for any plane fra.mne with and without a crack, wher the crack location

and the sensitivity number, 9, are own. In practice, tr.ansiissibilities can be

measured periodically or after a stro ing motion ent and compared to baseline

values to diagnose the damage. To facilitate a diagnosis method the relative

t .-an zissibiity change is introduced as follows:

- ? - T., (4.4)

where the subscripts c and a indicate the trw.n.sissbiites with and without t-e

c-ack, respectively. ' hen the structu-, is excited at the same Lequency and with

the same force magnitude before and after the dam __age. Rr .ecom.es

ILA•m
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YM,R=-"- 1 (4.5)

An undamped structure has mode points, that is, points with zero transverse

deflection at all tiznes. If, for such a structure, the response station is at a node point

of the undamaged modal shape, then y., = 0 . If, on the other hand. it is at a node

point of the post-damage modal shape, then y,, = 0. In general. then.

<(4.5)

Damped structures, in general. do not have true node points. Every point on the

structure defects somewhat during a period of the excitation. R, however, still has

minimum and na..um alues with respect to the location of the r-sponse station.

To facilitate referral to such locations, the following de-rnition is introduced. A

;=eudo-ncde poi-t. ?NP. of a damped st.-cture is a point with loc lly irnu_'ZI

a_--plitude cf transverse deftection. Thus, R2 is .nadun. at the PN-s of the

undamnaged structure and rm.-i--u.-n at those of the damaged st-ucture.

Relative trmissibity change is a function of the excitation location and

frequency, the location of the response station. and the crack location and see-r'y,

as well as the structural parameters. It is desirable to have large values of relative

trans=mssibility changes for as small cracks as possible. This may be accom.plished by

optiminin the parameters which can be controlled.

4.Z Optimum Parameter Values

It is found that exciting a fra n.e structure cn a colut'.n rather than on a girderis

more advantageous for diagncsis purposes. A 3x4 str:cture (Lne., 3, 7n4) is

shown in Figure 17. The frames studied throughout this chapter are uniform unless

stated otherwise; namely, all of the beam elements which make up the trames are of

equal length and have the same material and geometric properties. Figure 13

illustrates the variation of the relative t-ransmnissibility change at a response station

as a function of the excitation location which is varied along the leftm ost wall of the

frame. Each third of the abscissa corresponds to one of the columns cn that well, with
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N=3, M=4, CRACK ON 17 AT .1, THETA=.024, EXC. ON WALL 1
RE_.FOR-SE STAIlON ON 16 AT .51, UNDAMFD M-ETA=.-96

2

~ ~ -K E=cAnON LOCAMN

Figuare i8.Relative trnnisb ychange vs exccit aton locatior.

distance rneasured fromn the anch-or up. T1he response staticr. is or. girder. 16 at a.

no=alze ditance of 0.61 mieasured fro m.the 'Left end. Th'-e zrack is- on cgirder 17 at

a distance of 0.1 ron the left end of that girder. Sensitivty number, 9,frthe crack

is 0.024 (Eq. 2.40). DaipnL-4 factors, 6, (,Eq. 2-2) for the structure is taken to be 0.0i.

The un-dampned g value, .1, which is a uctoof th:e exciai o z f.-e-%U e-,c y (Z q. 2),Is

0.96, nearly the sazme as the trst undaniped chazacteristic value of thIest.tu-.

The djgure indicates that the relative t-ransnissibUity ctange for. giv-en crc

largest when the exc:itati*,on is applied aea-r a 1- rne joint.

Figue 19 illustrates the dependence of the relative trans~aisssibaity chan-ge, Rr,

on the excitation frequency expressed in terms of the undan.-Iped g value. Ctl:er

va~riables have the values given above with the excitation applied on colurnn I at a

distance of 0.95 from the ground. -?7 is seen to have peaks near the natural z-cdaL''

!recuencies of th-e structuie. Thus, it s concluded that structur-es should be tested

=ar resonance.
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N=3, M=4; TRANSMISSiBIL1TY STATION ON 16 AT .61
EXCIT. ON 1 AT .95; CRACK ON 17 AT .1 WrTH THETA=.024

S.,-

k ".
a

CC LA-

(A

a i ' 6 t L& - 1 2.2

g~ure19. Relative t-ansr-nissibilty charge vs frequency.

i'he a .=.LtudeS of dimensionless tran.sver-se ded.ections jY!j aaona giroe 1S

with and withuout a crack or. girder 17 are shown in FliurS 20. where dim.ensionless

detec~ion for the = ior-_ frae is def"ned b Y

with y ggitn by Equation (2M ). A computer progr-am is written to compute the

dimensionless deftections on e. framu-e with urifo r. mater"ial properti es, but different

bem= lengths in general The listing of the progra.m is given in Appendi:.

For an unda=.Ier (i.e., 6=0) st.-ucti re, th,1e ctu-'ves In ~u- 20 would be c _5U.d

modal shapes. Th-e pseudo-node point, PIN-P, of the girder is observed to have shiffted

after the damuage. 17he curves in Figure 20 a-so represent the transnts-sibilities (Eq.

4.3) with and withodt the crack as e. funlction of the location of the response station on

girder 15. Tjhese t-,vo curv-es yi[eld the R7- curve i Fig ure 21 which Indicates tha JI

takes its :=zi:= anud i:e-.u m values at the P_Nlms of the ?o- and pre-

clarnage st-ructure, .es-pectivply. Figure 22 shows the variation of R,- as a function of

, 2
U, ~ uu uaq
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N=3, M{4; M CN I-, CRACK ON 17 Ar .1 ThET-A=.024'
A.MPUTUOE OF TRANSVURSE DEFLIG11ONS ON 16; EA6

0.04-

2 ta.01

"-J

6d1

0.=Gw

MY.0.0

LOCATION ALONG TI4E GRCO 16

Figi-e 20. 7,-harse defections on girder 16.

N 3, V. = 4, (CTA-1lCN ON 1 A) 0.95, UNDAMPD SETA .3 .9
CRACK ON 17 AT 0.1 WITH -1H1ETA =0.0241

Lo

21 01 02LOCATION OF T0.-uMM STON N 1

Fg 21. RelIative tL-ans~issibiUR7 chzage vs respc~e locatom.

the locatlon of the :-esmome station om 15 -wh!en there is a crack on- colunr- 4.

&A
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N--3, M=4, ECITATION ON I Ar O.95,UNOAMPED Er7TA=O.96
CRACK ON 4 AT 0.7 WrrH THETA=.024

L2-

CRC 0NT.A1. WiTHI

US

K] _ ____

0.1

In

U31'

L0=A70N OF RMPONSZ =1.4 CM =-"NA~ 4

111g=8 23. F.-e-it t Slit change vs reszpo~e loca'dcn.

-- &A
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At lower natural frequencies, the columns of the structure do not have pseudo-

node points. Figure 23 shows that, at the fundamental frequency (Le., '=O.96), RT

remains nearly constant when the location of the response station is varied along the

columnu 4.

In summary, then. R. can be mazmized when the excitation is on a colurmn near

a joint and at a resonant frequency and when the response station(s) is(are) near the

?NP(s) of a girder(s).

Table 1 lists the PN? locations at the fundamental frequency, on some of the

girders of the frame in Figure 17 In the table, tf denotes the excitation location on

the respective column- All of the distances are normalized and measured -elative to

the lower (left) end of the respective colurn (girder). As the table indicates, a PN?

location is highly insensitive to the excitation location and to the value of the damping

factor.

4.3 The Nximber of Response Stations

It is desirable, from a practical point of view, to accomplish daage diagnosis

with a ninimum number of L-ansducers. This number is related to the objectives of a

diagnosis process. In theory, a transducer may be installed on every girder and the

crack can be isolated to within a beam element. In the Light of the high sensitivity of

the transrmissibiLity changes to the response location in the vicinity of the PN;Ps and

the uncertainties involved in practice, however, the objective in this study is to isolate

a crack to within one or two cells of a frame st-uctu-e. A local .ethod. such as an

ultrasonic technique, may then be utilized to determine the exact location of the

crack. With this objective in mind. the six response stations on the fram e of Figure 17

were chosen. These stations are on girders 16, 19, 21, 22 24, and 27. Numerical

results indicate that, in general, response at a measuring station is -'ost signift.cantly

a.ected when the crack is at a frame cell neighboring the station. In Figure 17

station 26, for example, has four neighboring ceUls while station 21 has six. The

criterion used here for selecting the stations is that each station has at most two
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neighborirg cells in common with those of another station. This iinplie; that every

other girder on a ,toor level has a station on it and that every other gi-der is skiped

as one moves vertically up the fr.-ame. The number of t-nsd.uce.-s (response stations)

required is, then. - when n. is even an d when m is odd, where n is theie £,te 2 -'2-

-number of stories and rm is the number of spans. The selection of stations in Fugure 17

violates the above criterion, even though the number of stations is still six. Most of

the n= erical cc-putatons were carried out with the confguration of Figure 17

therefore, the development of the method is based on that condguratin.

TABEM I

P.Ns of Some Girders (No crack)

= .96; . = .95 unless noted otherwise

Girder 18

6 Colurmn with the excitation

1 7 j 1(,=.55) 15

.01 .6062 .604 .6084- .6063

.30 .5994 ... .... 0 79

.30- .5932 ... ... .016

Girder 24

6 Column with the excitation

1 367

Ko~.61863 I.6140 i .5249 .61871

Other Girders(excitation on 7)

6 Girder No.

119 21) 22 27)

.01 1 .3916 .4895 .5105 .3813

(With a crack of 9=.024 on girder 17 at a distance of .1)
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4.4. Selection of the Column for Ecitaton

Figures 24-27 show the relative trarmisssibIlity change c,-urves resulting from

four diferent excitation locations when the other parameter values are kept the

same. Transmissibility change at station 2 7 for a crack on gLder 1- is small in all the

cases;, therefore, the corresponding curve is omitted. The .gures indicate that the

trends of Rj. values, for the given response stations, are highly insensitive to the

excitation location. A .- of relative transmissibility changes is defzed as the

order, with respect to the mag-nitudes. of the relative transmissibility changes for a

given crack confdguration. The word "trend". however, will be used in a more

qualitative imanner rather than with an implication of a precise ordering of.numbers.

For a crack on a certain beam element for instance, two response stations may

exibit the largest L-ansmissibility changes without one response clearly

overwhelmimg the other, in which case the trend will be described as such. From

Fg-es 2-31, then the trend of R7 values for a crack on girdLer 17 is such that

N=3, M=4, CRACK ON 17, TH-TA=.024, EXC. ON I AT .95, BETA=.96
X16 = .618, X21 = .475, X22 = .525, X24 = .649, X27 = .251

LZC

1.7 1.

C

0.o
.

..e.... - L

rr a 22

CRAMc LOCATION n V ).

Figure 24. Relative transmissibility change vs crack location(excitation cn 1).
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N=3, MA=4, CRAC ON 17, THETA=.024, EXC. ON 3 AT .95, BETA=.96
X16 = .618, X21 = .475, X22 = .525, X24 = .649, X27 = .351

LG

.70 .I

X
0.3

Leg"..," end

ft, 22.

Fgure 25. Re,;,lativ;e t-ra-srrmssib~lity ch-enge - .-cack location(excitatior. on 3).

N.=3, M--4, CRACK ON T7, THETA=.024, EXC. ON 7 AT .95, EETA=.g6
X16 =.518, X21 =.475, X22 =-_525, X24 =.649, X,27 .351

$4

.41

>

.... Legend

a .s ,IT a 24

CRU X W.C,I"ON

Fgure 26.1Relative transrrussibty change vs crack location(excitation on 7).

. .. .. . g e .. . ., . . . _
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N-3, M,=4, CRACK ON 17, THiETA=.024, EXC. ON 13 AT .95, BETA=.96
X16 = .618, X21 = .475, X22 = .525, X24 = .649, X27 = .351

UO_

Lad-

1.4-

...

i ....

5.....- Legend

,-4..5 , , , IT a 1.4

t.O- --N-- -

CRAC( LCATION

.igure 27. RelaVe L-arns-issibility change vs crack Location(excitation on 13).

station 1S displays a much rnore signi.icant transmissibility change than the other

stations over a large portion of the range ot the crack location. However, when the

response stations a-" very close to the PNPs, unlike in the dgures, the trends may be
=ore sersitve to the ezoitation loction. It should be noted that relative

trans--ssibLity changes and trans-issibilities themselves change as the excitation-

location is varied. ""he interest of this study, however, is in the t-ends rather than the

absolute values. In what follows, the general trends of R2. values will be studied by

ezcitiag the stu.acture. on colu 7 at a distance of 0.95 ftrcm the grou.d and by

studying only the left haLf of the fr-ane and utilizing the syr.=etry.

4.5. Selection of Response Locations Relative to the iNPs

Figures 21 and 22 demonstrate that relative transmissibility changes are highly

sensitive to the response location in the viciLity of the PN-Ps. In practice, however, it

may not be possible to determine the exact location of a PN'-. On the other hand. it

may not be desiz-able to install a t-ansducer at a. PNP either since the acceleration or
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deflection there may be too small tb be measurable. Transducers then must be

installed' at some distance from the PNPs and yet mtust be close enough to the PNPs

to yield large R- values. For some crack configurations, installing the transducers to

the right of the pre-darnage PNP yields better results (Fig.21)., whereas for others

installing them to the left is better (Fig. 22). This is due to the fact that PNPs may

shift to the right or left after the damage. The situation may be improved by

instal In two L-ransducers in the vicinity of a PNP in close proximity to each other.

Such a measure Ls likely to increase the probability of obtaining a large .. value for a

given crack.

4 5.1. The Amount of SJft of the Response Stations Relative to the PNPS

Table 2 Usts the amplitudes of dimensionless deftections of selected girders on

the undamaged frzume L the vicinity of P.?Ns as well as the lateral defectJons of the

floor levels for the frame of Figure 17 m-th the excitation on column 7. The undamped

13 value, gj. is 0.98 (Le., at the fundamental frequency). The amplitude of complex

defdection can be shown to be

l*I= (4.8(I6)L, _)

from Equations (4.7) and (2.5), where I y is the physical dedection. An empirical
formula for the fundamental frequency of multistory buildings is :s = 20 rad/s

[33],wbich is the Uniform Building Code formula, where n is the number of stories. For

a three story building, then, us % 21 rad/s. If it is assumed that the amplitude of the

force, Fm, is approximateLy equal to the weight Lpg, of one beam eie.ment, where . is

the gravitational constant, equation (4.8) can be written as

Eddy-current displacement tansducers are capable of measuring deflections less

than 10-3 inch (0.025 mm). If this value is accepted as the base, I y *Inmust be of the

order 10- " in order for 1y I to be measurable. Fro= Table 4, then, the locations of the

response stations are determined to be at the points away from the FPNs, where 1 y

i~- M, ilu ]ut l[ l-~m n
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TABI 2

Defiections at Selected Locations

Excitation on colu=m 7 at .95

g=.96, 6 =.01

Sidesway of the Floors

Floor

1. 0.4-38
2 0.9093 157

at the excitation 11 0.422

In the vicinity of the Irder PNs

GirderI Location j/*yxl1o

.588 3.04

.598 1.53
is .60o4(PNF) 0.008

I.8 1.40
.625 2.83

.475 1.32
21 .4895(PNP) 0.O14

.505 1.41

.589 1 14
24 .6 I87(PNP) 0.003

.649 1.09

reaches a value of at least I0-3. This translates into a shift, away from t he respective

P.NP, of 0.01 for girders 15 and 19, 0.015 tor 21 and 22, and 0.03 for 24 and 27. The

response locations used in Figures 24-27 -er-e based on these shift values. As the

response stations are moved further away from the PNPs, R 7 values get smaller and

become comparable in value as a result of which the trends are gradually lost. For

example. when the locations of the response stations are

tie = 0.5, 41g = 0.15, 1 = 0.20, 22 = 0.50, 64 = 0.85, and t27 = 0.15, all of which

are measured f'om the left end of the respective girder, all of the relative

transmissibility changes for a given crack are either small (less than :0%.) or close in
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N=3, M=4, CRACK ON 17, THETA=.024, EXC. ON 7 AT .95, BETA=.S6
X16--.658, X21=.475, X22=.525, X24=.649, X27=.351

GUS

CA ".O I -

• .., . ."

F0-ure 28. Relative transmissibility change vs c--k location.

value. On the other hand. nmoving the ----sDonse stations closer to the Ph' s increases

the possibiity of diag'nosis as the trends become more definitive.

It is desL-able to know how far away '--c= the ?-NPs the trends still persist- Figure

28 illustrates that at a distance of 0.05 from the 7N. of airder 16, the t0.nd for a

crack orn g-ider 17 is still clear, wh n the crack ia on the lef of the ocame ad

vhen the other response stationcs ase ket at the saPe locations as in FLures 24-27.

Further aday fr the PNo , however, the trend starts becomin less cles--cut.

4.5.2- The Direction of Shift of the Responise Stations Relative to the PNPs

Another question related to the optimum location of the response stations

relative to the PFYPs is that of which direction to shift the response stations. Tables 3

and '4 list the relative transmissibility changes at the six response stations as a

function of the crack location. In Table 3, the response stations on gLders 18 and 19

are shifted --omi the corresponding PNPs by a distance of 0.01 away from the center,

while those on 21 and 22 a-re shL'ted by a- distance of 0.015 toward the center and the

.. .......... -- -- - - -- - -- -_ k .. ..
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TABLE 3

Relative Tranzsnssibillty Changes vs Crack Location

Excitation on colTmn 7 at a distance of .95, f = .96, 6 = .01, c = .024.

Response Locations:

elg = .598 42z = .505 t24 = .589
e19 = .402 = .495 hz7 = .4 11

= crack locatio. -S : response station)

1) Crack on colurnm I

RS1 i RS 19 R 21 RS 22 RSq 24 RS 27

0.001 FT41 0.239 0.257 0.224, 0.179 -0.235
0.100 1-0-2 0.163 0.171 0.153 0.128 0.160-
0.200 -0.067 0.i03 j. 104 0.096 0.087 .0.101
0.300 0.027 0.059 0.056 0.054 0.054 0.057
0.4-00 0.071 0.025 0.023 0.025 0.030 0.026
0.500 0.067 0.008 0.004 0.007 0.013 0.006
0.600 0.018 0.000 -0.001 0.000 0.002 0.000
0.700 -0.75 0.003 0.007 0.003 -0.003 0.003
0.SCO -0.214 0.016 0.028 0.016 -0.002 0.017
0.900 1-0.400 0.040 0.061 0.040 0.005 0.041
0.9 99 0.074 0.107 0.073 0.017 0.076

2) Crack on coiumnm 2

.S Is RS 19 Rs 2'j RS 22 RS 24 IS 27

0.001 0.043 0.025 C. 049 0.116 0.038
8m

00: -0.3 011 0.024 0.021 0.029 0.058 0.022
0.200 -0.177 0.011 0.015 0.015 0.019 0.010

0.30 0.003 0.008 0.005 -0.001 0.003
0.400 -0.013 0.000 0.002 0.000 -0.002 0.000
0.500 0.029 0.002 -0.005 0.000 0.013 0.001
0.800 0.046 0.007 -0.012 0.004 0.044. 0.005
0.700 0.037 0.017 -0.019 0.011 0 0.012
0.800 0.004 0.030 -0.027 0.021 0 .153 0.022
0.900 -0.052 0.045 -0.036 0.035 0.035
0.999 -0.132 0.064 -0.04.5 0.050 0 0.049

,a ,3
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TABLE 3
(continued)

3) Crack on colunn 4

____IRS1i6 RS 19 RS 21 RS 22 RS2 Zt RS27

0.001 1 0.34,9 0.172 0.259 0.370 0.323
0.100 0.680 0.221 0.123 0.175 0.231 0.209
0.200 0.321 0.128 0.083 0.105 0.131 0.121
0.300 0.063 0.052 0.056 0.062 0.060
0.400 -0.018 0.022 0.025 0.023 0.020 0 022
0.500 -0.035 0.003 0.009 0.005 0.001 0.003
0.800 0.039 0.002 -0.005 -0.000 0.003 0.0C2
0.700 0 0.020 -0.014 0.007 0.027 0.015
0.800 10.4751 0.058 -0.019 0.025 0.072 0.052
0.900 10.8581 0.117 -0.021 0.063 0.141 0.108
0.999 . 0.200 -0.020 0.113 0.238 0.151

4) Crack on colu.n 5

RSis IRS19 RS 21 RS 22 RS 24 RS 27

0.001 I 1.20 0.171 0.560 0.205 0.015 0.133
0.100 I0.773 0.103 0.297 0.115 0.025 0.050
0.200 0.450 0.054 0.107 0.053 0.025 0.043
0.300 0.2!8 0.022 0.008 0.015 0.022 0.018
0.400 0.067 0.004 -0.021 -0.001 0.011 0.004
0.500 -0.016 0.000 0.017 0.003 -0.005 -0.000
0.500 -0.034 0.008 0 0.025 -0.025 0.005
0.700 0.012 0.029 0.235 i  0.067 -0.058 0.019
0.300 I 0.1T4 0.061 0.5211 0.129 -0.097 0.042
0.900 0.308 0.107 0.335 0.210 -0. 148 0.074
0.999 0.563 0. 15 1 0.315 -0.207 0.115

5) Crack on girder 16

ES ! .IRS 1 FS 21 F.S 22 .S24 RS 27

0.001 {-'15 0.259 0.299 0.253 0.29-0.100oo 098 0.170 0.174 0.174 10.2Z31I 0.162
0.200 -0.017 0.098 0.087 0.096 0.133 0.092
0.300 0,470 0.048 0.032 0.043 0.069 0.044
0.400 0.534 0.016 0.002 0.012 0.027 0.015
0.500 10.211 0.002 -0.004 -0.000 0.004 0.001
0.800 -0.489 0.002 0.013 0.006 -0.001 0.003
0.700 -0.651 0.019 0.054 0.030 0.011 0.020
0.800 -0.050 0.051 [.119 0.073 0.041 0.053
0.900 1 0.102 0.214I 0. 139 0.092 0.105
0.999 . 0.174 0 0.232 0.167 0.177

MLA
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TABLE 3
(continued)

5) Crack on girder 17

RS 5 RS 19 RS 21 RS 22 RS 24 RS 27

0.001 -0. 41 0.190 0.215 0.098 0.085 0.135
0.100 -0.569 0.112 0.146 0.069 0.050 0.083
0.200 -0.354 0.056 0.091 0.045 0.025 0.045
0.300 -0.190 0.019 0.049 0.025 0.003 0.018
0.400 3 0.001 0.019 0.010 0.000 0.004
0.500 0.03 0.000 -0.001 -0.000 0.000 0.000
0.600 0.038 0.017 -0.010 -0.007 0.008 0.007
0.700 0.032 0.052 -0.008 -0.010 0.025 0.026
0.500 -0.0:15 0.071 0.005 -0.009 0.050 0.056
0.900 -0.108 0.152 0.029 -0.004 0.084 0.098
0. 99 1 0.290 0.065 0.004 0.129 0.155

ones on 24 and 27 by a distance of 0.03 away r-om the center. In Table 4, the shifts

are In the opposite directions by the sa.m.'e amounts. Table 3 shows only the cases

when the crack is on a bea-n ele m-ent in the neighborhood of response station 25, t-at

is, on 1. 2, 4, 5, 16, or 17. A negative transLissibillty change which is large in

=-.agnitude is considered signi~cant. From Table 3, then, the charnges at station 15

are the rnost sigificant amngcn all the stations, when the crack is on an, ele.ent

neighbcrn station 16. It is =referable, however, to choose a response station at a

location where transrnissibility (or def.lection) increases after the da-nage, which

i.creases the measurability of post-dnamage deflections. When Table 3 is conr-. ed

with the corresponding segments of Table 4, it is observed thia t is mr ore

ad-an&tageous to shift response station 16 to the r g ht for a crack on elenents 1, 2, IS,

and 17, and to the left for a crack on - and 5. Figure 20 -. eariy M.--z:at-es case f:or

a crack on girder 17. In the analysis which follows, respcrnse station is ta-ken to be

located to the right of the respective APINP since this is =,ore advantagecus for rnore

elenents. As mentioned ea-iier, if one transducer is mounted on each side of aP 7,

the prospects of diagnosis are sig=ifcantly Lproved. ShiJr cornputa,:-zns -and

comparisons were carried out for crack locations on other beam ele-rents. The

results are sun-ma.ized in Table 5 which shows the mreferred &'ections of shift

]&
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TABLE 4

Relative Transriissibility Changes vs Crack Location

Excitation on column 7 at a distance of .95, = .96, 6 = .01, 6 = .024.

Response Locations:

jd = .615 61 = .475 '24 = .49
Cis = .382 t= = .525 = .351

= crack locatiin. RS: res-orse station)

1) Crack on coLum I

RS 16 P. 19 RS 21 -RS 22 RS24 RS 27

0.001 0.9 0.220 0.!96 0.233 0.277 0.225
0:100 0.546 0.150 0.139 0.160 0.183 0.154
0.200 0.2721 0.095 0.093 0.102 0.i1 0.095
0.300 0 0.054 0.057 0.059 0.059 .0.056
0.4001 -0.0!9 0.025 0.031 0.025 0.023 0.027
0.500 -0.053 0.005 0.012 0.009 0.004 0.008
0.600 -0.018 0.000 0.001 0.001 -0.001 0.000
0.700 00.003 -0.00 0.002 0.005 0.002
O.00 0.253 0.015 0.001 0.01. 0.032 0.014
0.900 0.491 0.037 0.011 0.035 0.069 0.036
0.999 0.068 0.027 0.066 0.121 0.067

2) Crack on column 2

iS I RS .s21 RS22 RS2 I 27

0.001 .5 0.051 0.07 0.051 -0.015 0.055

0.100 0.385 0.030 0.037 0.0a -0.000 0.0-2
0.200 0.205 0.014 0.013 0.013 0.008 0.015
0.300 m 0.005 0.000 0.003 0.005 0.005
0.400 0.014 0.000 -0.001 -0.000 0.002 0.000
0.500 -0.025 0.00i 0.008 0.002 -0.010 0.001
0.600 -0.034 0.006 0.027 0.010 -0.029 0.007
0.700 -0.006 0.01. 0.058 0.022 -0.054 0.017
0.500 0.054 0.029 0.093 0.038 -0.086 0.031
0.900 0.481 0.04-. 0.138 0.059 -0.125 0.04-9
0.999 Q02J 0.065 0.191 0.052 -0.189 0.071
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TAEMIZ4
(continued)

3) Crack on colu.n 3

R___ S 15 RS 19 RS 21 RS 22 PS 24 PS 27

0.001 -0.031 0.007 0.043 0.012 01 0.006
0.100 -0.01" 0.003 0.024 0.008 0.052 0.002
0.200 -0.008 0.001 0.010 0.002 0.008 0.000
0.300 0.000 0.000 -0.000 -0.000 0.000 0.000
0.400 0.008 0.001 0.006 -o.o0o 0.024 0.001
0.500 0.011 0.002 -0.008 0.001 0.077 0.003
0.600 0.013 0.005 -0.007 0.003 0.1531 0.005
0.700 0.013 0.008 -0.004 0.005 0.2491 0.010
0.500 0.011 0.011 0.001 0.008 0.3551 0.013
0.900 0.008 0.014 0.008 0.012 10.475 0.016
0.999 0.003 0.017 0.016 0.015 0.595 . 0.019

4) Crack on column 4

RS_ 1 S16 RS 19 IRS 21 R~S22 RS 24 L

0.001 -U.653 0,2851 .0.267 o.308
0.100 0.184 0.175 0. i09
0.200 -0.104 0.109 0.157 0.132 0.107 0 .11
O.3O0 0.020 0.057 0.068 0. 04 0.058 o.059
0.400 0.067 0.022 0.017 0.022 0.025 0.023
0.500 0.046 0.004 -0.003 0.002 0.005 0.004
0.600 -0.041 0.000 0.007 0.003 -0.001 0.001
0.700 -0.194 0.011 0.048 0.024 0.005 0.014
0.500 -0.4.22 0.038 0.120 0.086 0.023 0.04
0.900 -0.7*36 0.077 0.227 0.132 0.054 0.090
0.999 0.135 0.373 0.223 0.100 0.156

5) Crack on column- 5

S6 RS19 RS 2 1 l Z, .24 27

0.001 . 147 -0.272 0.129 0.308 2O.8 i
0.100 1-0.950l 0.086 -0.111 0.084 0.168 0.110
0.200 -0.392 0.043 -0.012 0.050 0.073 0.056
0.300 0.018 0.033 0.025 0.017 0.021
0.400 -0.067 0.002 0.030 0.008 -0.004 0.003
0.500 0.019 0.001 -0.018 -0.002 0.006 0.001
0.600 0.057 b.011 -0.111 -0.006 0.047 0.013
0.700 0.050 0.032 -0.251 -0.005 0. 1 0.040
0.800 -0.004 0.068 -0.444 0.001 0.223 0.081
0.900 -0..09 0.111 -0.694 0.012 1362 0.135
0.999 -0.271 0.168 0.0205 0.211
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TABLE 4
(continued)

6) Crack on colun S

o RS 1 RSo.9 RS 21 RS 22 RS24 M 27

0.001 0.106 0.036 -0.017 0.021
0.100 0.064 0.020 1-.2741 -0.015 -011 0.012
0.200 0.034 0.009 . -0.011 -0.038 0.008
0.300 0.012 0.002 -0.054 -0.006 0.010 0.002
0.400 0.000 0.000 -0.001 -0.000 0.001 0.000
0.500 -0.004 0.001 0.036 0.007 -0.060 -0.001
0.500 -0.001 0.005 0.048 0.014 -0.165 -0.000
0.700 0.008 0.012 0.036 0.022 -0.320 0.001
0.800 0.023 0.021 0.003 0.029 -0.510 0.002
0.900 0.043 0.031 -0.051 0.035 -0.735 0.004
0.999 0.067 0.043 -0.122 0.041 - 0.005

7) Crack on colu- 7

IR 1 FS 9 RS21 RS 2 2 RS 24 FS2

0.00 . 092 0.012 .37 0.013
0.100 0.024 .02 057 007.00.0 

[.0 0.0 .204 0.010 0.015 0.203 0.203 t

000 0.005 0.005 -0.004 -0.004 0.001 0.001
0.700 0.029 0.039 -0.013 -0.013 0.016 0.016

0.800 0 0 -0.017 -0.017 0.048 0.048
0.180 8' .185 -0.016 -0.015 0.099 0.099

0.9 30 .01 -0.012 -0.012 0.154 0.154

8) Crack on colu.-.-n S

RSq15 RSq19 R.S2. RS 22 RS 24: .27
0.001 0.279 . 0.132 0.132

0.100 0.175 0.1752 0 0.053 0.083
0.200 0.098 0.098 a [Q0J 0.045 0.04
0.300 0.044 0.044 0.006 0.006 0.021 0.021
0.400 O.012 0.012 -0.020 -0.020 0.0C6 O.006
0.500 -0.002 -0.002 0.019 0.01T -0.001 -0.001
0.800 0.001 0.001 0 0 0.000 0.000
0.700 0.021 0.021 0.252 0.252 0.009 0.009
0.800 0.059 0.059 0.512 0.512 0.025 0.025
0.900 0.114 0.114 0.813 0.513 0.049 0.049
0.999 0.188 0.188 0.079 0.079



86

TABLE 4
(continued)

9) Crack on colu.m 9

___ RS 16 RS 19 RS 21 RS 22 S. 24 RS 27

0.001 0.014 0.014 0.428 .425 0.065 0.065
0.100 0.006 0.006 .289 0.259 0.029 0.029
0.200 0.001 0.001 0.m Es .4- 0.007 0.007
0.300 -0.001 -0.001 0.056 0.056 -0.002 -0.002
0.400 0.000 0.000 -0.002 -0.002 0.000 0.000
0.500 0.003 0.003 -0.030 -0.030 0.014 0.014
0.600 0.008 0.008 -0.03Z -0.032 0.037 0.037
0.700 0.014 0.014 -0.008 -0.008 0.068 0.068
0.500 0.020 0.020 0.038 0.038 .1
0.900 0.028 0.028 041 0.104 0.151 0.151
0.999 0.035 0.035 1O.196 0. 1 99 0.199

10) Crack on gir-er 16

=RS 15 RS 19 RS 21 RS 22 RS 24 RS 27

0.001 [ 3.230 0.279 0.255 0.273 0.211 0.23=8
0.1I00 I 1.399 O. 173 0. 174 0. 175 0. 125 0. 180
0.200 0.2 41 1 0.097 0.112 0.102 0.065 0.101

0.300 -0.365 0.04,5 0.064 0.051 0.026 0.048
0.400 -0.501 0.014 0.030 0.019 0.004 0.0i5
0.500 -0.209 0.001 0.006 0.002 -0.002 0.001
0.600 0.506 0.005 -0.008 0.001 0.008 0.004
0.700 0.525 0.026 -0.012 0.014 0.033 0.024
0.00 0.247 0.066 -0.008 0.044 0.075 0.063
0.900 -0.754 0.127 0.007 0.091 0.137 0.123
0.999 1.799 0.212 0.032 0.159 0.222 0.207

11) Crack on girder 17

RS 16 P.S 19 RS 21 RS 22 RS 24 RS 27

0.001 1..21- 0.080 0.051 0. 184 0.190 I 0.40 I
0.100 0.05 0.056 0.019 0.107 0.121 i 0.088
0.200 0.487 0.037 -0.002 0.051 0.069 0.049
0.300 0.251 0.021 -0.011 0.016 0.022 0.022
0.400 .0.90 0.009 -0.010 -0.001 0.009 0.006
0.500 -0.003 -0.000 0.001 0.001 -0.000 -0.000
0.800 -0.029 -0.007 0.022 0.020 0.003 0.004-
0.700 0.012 -0.010 0.054 0.057 0.020 0.019
0.800 0.12 -0.011 0.098 0.114 0.051 0.04-5
0.900 0.3101 -0.009 0.155 0.193 0.097 0.083
0.999 E2.9J -0.004 0.225 0.29 0.160 0.134

A lIl i I•I m ~ l I
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TABIZ 4
(continued)

12) Crack on girder 20

RS 16 RS 19 RS 21 RS 22 S 24 RS 27

0.001 0.239 0.123 T. Z 0.170 . 0.123
0.100 0.168 0.080 0.102 0.250 0.081
0.200 0.110 0.047 0.089 0.053 0.168 0.048
0.300 0.064 0.023 -0.002 0.019 0. 0. 024
0.400 0.029 0.007 -0.038 0.001 0.049 0.008
0.500 0.005 0.000 -0.016 -0.002 0.009 0.001
0.600 -0.009 0.002 0.058 0.010 -0.019 0.001
0.700 -0.013 0.011 0.18 0.035 -0.035 0.009
0.800 -0.007 0.028 0.371 0.076 -0.039 0.025
0.900 0.009 0.055 0.618 0.133 -0.031 0.049
0.999 0.036 0.090 0. 929 0.207 -0.012 0.082

13) Crack on giLrder 21

RS 18 RS 19 RS 21 RS 22 RS 24 .S 27

0.001 -0.037 0.084 1 0.0118 -0.129 0.094
0.100 -0.030 0.052 1-0,833 -0.086 -0.094 0.0,6
0.200 -0.023 .0.027 -0.003 -0.017 -0.064 0.025
0.300 -0.015 0.011 0.020 -0.038 0.0100.4-00 -0.008 0.002 I oC.3'95 0.025 -0.017 0.000

0.600 0.008 0.006 -0.343 -0.059 0.014 0.009
0.700 0.017 0.019 -0.297 -0.149 0.023 0.027
0.800 0.025 0.040 0.125 .271 0.023 0.055
0.900 0.035 0.069 0.932 1 .425 0.029 0.092

0.9 0. C44 0. 106 2.127 J-00 5 0.025 0.139

14) Crack on girder 24

IRS16 I RS 19 RS 21 RS22 RS 24 R 527

0.001 0.003 0.017 0.016 0.015 0 0.019
0.100 0.001 0.011 0.015 0.011 3 0.012
0.200 -0.001 0.007 0.014 0.008 -0.031 0.006
0.300 -0.001 0.003 0.011 0.005 T1. 0.002
0.400 -0.001 0.001 0.007 0.003 1 -0.000
0.500 -0.001 0.000 0.002 0.001 -0.075 -0.000
0.600 0.001 .0.000 -0.004 -0.001 0.150 0.001
0.700 0.003 0.002 -0.011 -0.002 0.325 0.005
0.800 0.007 0.004 -0.019 -0.002 L0.150 0.011
0.900 0.008 -0.029 -0.003 .0.311I 0.019
0.999 0.015 0.013 -0.038 -0.002 -0.957 0.027
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TABLE 4
(continued)

15) Crack on girder 25

,RS 1 RS 19 R5 21 RS 22 RS 24 RS_27

0.001 0.017 0.008 -0.022 0.020 [454 -0.020
0.100 0.011 0.005 -0.018 0.010 0.317 -0.009
0.200 0.007 0.003 -0.015 0.003 0.201 -0.001
0.300 0.004 0.002 -0.010 -0.001 OO 0.003
0.400 0.001 0.000 -0.005 -0.002 0.040 0.003
0.500 -0.000 -0.000 0.000 0.000 -0.002 -0.000
0.800 -0.000 0.000 0.007 0.006 -0.019 -0.008
0.700 0.001 0.001 0.013 0.014 -0.009 -0.020
0.800 0.003 0.002 0.020 0.025 0.025 -0.035
0.900 0.006 0.004 0.027 0.039 1 -0.053
0.999 0.011 0.006 0.034 0.056 1 . -0.075

relative to the ?NPs (to the left or to the right) for all the bea. ele-ents on the left

half of the framne. The preferred directicn of shift is indicated only when the cracked

beam ele.-ent is in th- neighborhood of the response station in question. From Table

5, it. is concluded t.at resporse stations 16 and 24 should be shifted to the right and

station 21 to the left of the respective ?.NFs of the Lnda.-aged frame.

4. S. Development of the General Trends

In this section the transmissibility method will be develcoed with the 3x4 fram-e

of Fgure 17. The procedure used is to vary the location of a single crack of -now-a

sensitivity number throughout the frame, on each coi-r.n and girder in turn, and to

compute the relative transmissibility chazge at each one of the six response stations

corres-onding to each crack locaticn. Trends of relative t-ansmissibity changes as a

function of the crack location are then estabLishd, which can serve as a diagnosis

procedure in a practical situation wherein the crack location is unnown and the

transmissibility changes are known from neasured data.

4.6.1. Exciting the Frame at its Fundamental Frequency

Relative transzissibility charges computed for the frame excited at the

fundamental frequency are shown in Table 4. Table 4 is arranged in 15 groups in each
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TABLE 5

Direction of 'Shif of the Response Stations

(LND = No. of the bea= element with the crack.

RS: Response Station.

R. Shift the response station to the right of the NP,

L- Shift the response station to the left of the PNP.)

LNI RS _

16 21 24

1.2.7.15.17 R {
4.5 L

5,21 .R

8.9,20 . L

3,24.25 .. R6 ... ... L.

of which nunerical data for a crack on a pat.icular bea.'n element is presented. Crack

location In each group- of data is varied from the lcwer (left) end of the element to the

upper (right) end for a column (girder). Signifcant R,- values are shown framed in

the table. "signiftcance" being deter.-ined by the following criteria.

i) An RT value whose magitude is greater than 0. 1 is considered signifcant.

ii) If all or most of the response stations indicate signir-cant trazsmissibiuity

changes for a certain crack location, but some of them indicate much larger changes

than others, then only the larger R7 values are framied. Exa.niples can be seen in da:a

gr'oups I and 4.

ii) If several response stations ;ndicate sigriftcant and comparable

transmissibility changes for a certain crack, the overall trend of tr-n'issibilty

changes for that.crack is considered insignifican. An exar.nple in Table 4 is the case of

a crack on colurn-n 4 at a location of 0.2 from the ground. All of the R,- values for that

crack have mnagnitudes between 0.10 and 0.6I. Such a crack -ay be detectable, but

is not diagnosable.



90

A crack is considered diaa-osable if it can be located wit',n one or two cells of

the fr-a=e; that is. if the trend of RT- values for that crack is as described in (d)

above. Thus, the ranges of c.-ack locatiors 0.-0.29 and 0.71-1. on colurnm 1, and the

ranges 0.-0.2S and 0.54-1. on column 6, for example, ar; diagnosable. The diagnosable

regions of all the beam lements in Table 4 and the response stations exhibiting

signi6dcant transmissibility changes in each one of those regions are sutnarized in

Table 6. Also shown are the percentages of the lengths of the beam elements "which

are d.agnosable. The following conclusions ar-e drawn m Table 6.

i) The response station(s) closest to the crack exhibit the most signicant

t-ansmissibility change(s) with the exception that stations 24 and 27 emxe.Ience

Larger changes than stations 21 and 22 for a crack on column 7. iowever, since

stations 16 and 19 exhibit the most signiftcant changes, the diagnosability of a ---ack

an 7 is unafected. For a crack in region 0.91-0.92 of girder 16, the most sig nifcant

changes, which are about 0.13, are experienced at stations 19, 24, and 27, which m'ay

cause a raisdiagnosis.

ii) Beam elements with diagnosable regions larger than 75/ are 5, 6, 16, 21, and

24, the last three of which have response stations on them. Both ends of the columns

5 and 5, on the other hand. adjoin the end of a girder with a response station. -hat is,

colu n 5 is neighbors with girders 16 and 21, and colurmn 6 i i ,ith 21 and 24.

iii) All of the regions near the joints are diagnosable, with the s--Iall exception of

the region 0.-0.02 at the left end of girder 21. In that region, response station 22

exhibits the most sigmifcant tra- nsnissibility change which .--.ay cause a misdisgnosis.

iv) The mid-regios of all the elements, ,nth the exception of those carryi g a

response station, are undiagnosable. At the fundamnental frequency, these regions are

usually regions of low stress or low resisting =ornent Slope discontinuity In those

regions is, therefore, s-mall, for a given crack depth (Section 2-S), which reduces -the

efect of the crack on the sL-uctural ress-onse.

.. . .... ..... . . L . . . --II& A
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TABE 6

Surn-nary of the Diagnosable Regions zo n Table 4

ND= no. of the beam= elem-.ent with the crack

DR = diagnosable region on the beai

RS = re xons e station(s) exbibiting the most
sigciftcant relative tra-smissiblity chazge(s)

PI = total .ercentage of the bea.= length vbtich is diagnosable

DJ IR IRS D
1I .00 -. 29 is
.7-1.0 16 5

2 .00-.29 16.85 - 1.0 16.21,24

.00-.04 241

.53- 1.0 24r

.00-.13 16,2144.64-1.0 16

1 .oo- .38 15
.59-.67 21 79
.57- 1.0 21,24

I .00-.14 2124
6 .14- .25 21 76

.50- 1.0 24

7 .00-.14 15, 19,24,27 34
7 .50-1.0 16,19 3

.00 - .20 21,2Z, 15, 9 52

.58- 1.0 21.22
.o0-.25 21,22

9 .78-.59 24,27 47
.89- 1.0 24,27,21,22

.00-.21 is

.25-.51 16
is .54-.79 16

.83-.91 16 67

.91 -. 92 19,24,27

.92- 1.0 16

.00-.39 16
17 .80-.84 16,22,21 59

.54-1.O 16
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TABLE 6
(continued)

I

.00 - .14 21.24
20 .14-.30 24 67

.63 - 1.0 21

.00-.02 22

.02-.03 2j.21

.03-.19 21
21 .22- .47 2191

.53 -. 71 21

.71-.74 21,22
.74-.31 22
.81- 1.0 21.22

.00 -. 24.25 -. 47 2" 7
24 .58-.31 24

.85-1.0 24

25 ,00-.31 2.25 1-2-i.02 39
11 .92-1.0 24r

Diagnosabiitv for the whole framne = 62.7 %.

The overall dia~ncsabi1ity of the frem=e excited at its fa'.t. fecuencv can

be computed by adding aL the percentages in Table 6, rnultiplying Le jun by two,

subtracting the per-entages for 7 'r-ough 9 once and dividi~ng the result by the total

number of beam elements, 27. This yields a diagnosability for the whole fr.4-me of

62.7%. In other words, the mid-regions of all the beam eleme-ts which are

undiagnosable make up the 37.37. of the total fra.me area.

4.6.2. Ez=iting the Frame at the Third Modal Frequency

The previous section indicated that rrid-regions of the bear- eiements, whch a -e

regions of low resisting moment at the fundamental frequency, are undiagnosable.

the L-ae is excited at a higher modal frequency yielding diferent co-plex =cdal

shapes and moment distributions, more segments of the frame become diagncsable.

The PNPs and corresponding dirensionless decioons for the fra.e excited at the

second and third modal frequencies are summ--arized in Table 7.

• I I I i a a D~mim &A
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TABLE 7

PN.s at the Second --nd Tlird Modal Frequencies
(undamaged frarne)

Excitation on column= 7 at .95

(Girders 19, 22, 27 are sym etrical with 16, 21. 24.)

= 1.72

gider"no. : 16 2. 24

PNP location .5755 .4795

*1 x104 at PNP 1 .52 13.2 3.4

1=25

girderno. 16 21 24

PNI location .609! .3255 .7174

xI10 -1 atPN I 1.5 .72 1 1.2

it will be assumed that the reszonse stations are at the sae Iocations as".n -_e

prev.ous section. T-hen, at the second mcdal frecuency, the dL. e.si niess deooct -- n.

at the res._cse staticns on girders 21 and 24 are too s to be measurable (Pat

of Tab.e7). "nis is a result of the fact tht the PN-Ps at the f-st two modal frecuences

a.re close to each cther for both girders. The FN- of girder IS at the second

frcLuency, however, is relatively far from that at the f-unda--ental frequency. 7Th-e

situation is re';ersed at the third m.odal ft.requency (Part 2 of Table 7). It Ls e-ected

that excitin- the frame at the thLrd frequency w alter the -odal shape more

sig= -ca tY th_ excitzg it at the second frequency, thus m= --ore addtional

egions of the fra-me diagnosable.

Cornoutations siz:ilar to those of the previous section were carried out at the

third -nodal frequency. Regions which becormne diagnosable in addition to those

Table 6 are presented in Table 8. Adso show= az the regions wtich may, at the

fundamental frecuency, be -idsdiagncsed a.d are now diagnosa-le co-c-' tly at the

third frequency. Those are the r-egions 0.-0.14 on colm--n 7, 0.91-0.92 on girder :a,
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and 0.-0.05 on g;der 21 Table 8 Lndicates that the general t-end establLshed at the

fundamental ieuency is preserved to a large extent at the fthird ,reuency. That I.

a crack a. ects the tra._-s.issibility at the closest response station the incst.

Excepticns are for the cases of a crack on elere-ts 3 and 24, in which statio 1

exhibits the most sigrnitcant transmissibility changes for the regions show- rmther

TABLE 8

Additional Diagnosable 'Regions at the T'.-hird Moda FreCuency

All of the ar-ameters sa.me as Ln Table 4 exce.t 3 -=2.25.

Nomenclature sam.e as in Table 6 with prefa: A deno tLng additionaL

ND A.DR_________ PD (T.)

1 .47-.71 16 24

.29-.47 16
2 .55-.73 16 .4

.78 .85

3 1 .04-.51 16 47
4 1- .29 16

5 .38-.47 16.51 -. 59 16

6 .25-.41 21 15

7 715,i1.s3- .80 15,19
'I t 16,19
.20-.29 1,12
.56 -5._A81.

9 1 .25-. 47 2 1, 22 22

.23 -. 2S i6

169 166
.91-.920 16

21 .00-.03- 21

24 .15-.25 is1 10

F17,20,25 1APD less th an 1%

(not included in AD)
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tha station 24. This is not surprising since station 16 is much closer to the P. of

girder 16 at the third ft-equency than station 24 is to that o f girder 24. On the other

hand, it is expected that more additional regions on g-rder 20, for example, would be

diagnosable if station 21 were closer to the PINP of girder 21 at the third frequency.

With the addition of the new diagnosable regions, the diagnosability for the whole

frazne now becomes 79%., ,nth the diagnosability of the beam elements 7, 5, 9. 17, 18,

20, 23, 25, and 25 rem-maining below the average. It is also expected that if the critericn

stated in Section 4 is fully obeyed in the selection of the bea. ele--ents for the

response stations, the diagnosability of the structure will increase. According to that

cri-teion. girders 15, 23, and 25 would carry the response stations rather than 19, 22.

and 27, respectively.

tt
I it IR Z-4-

IR 16 5

FRgure regions on the frame.
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The general trends established above are presented in the form of "Ihfluence

regions" in Figure 29. Inftuence region of a response station is de!ned as the region L

whose diagnosability the station in Cuestion plays the most infuential role. In other

words, a crack in that region affects the transmissibility at that particular station the

most.

4.7. The Effect of Crack Severity on the Trends

The previous computations were carried out for a crack of sensitivity number

9=0.024 (Eq. 2.40). For beans with slenderness ratios (length to beam-depth ratio) of

10 and 20 and for a Poisson's ratio of 0.3, this 9 corresponds to the relative crack

depths of 0.3 and 0.4, respectively. Numerical results show that changing 9 does not

have signiftcant effects on the trends. Only the t.m-,sissibility changes are reduced

or amplif ed dependir4 on whether 9 is decreased or increased. respectively. Is 9

gets sraller (or as the crack gets shallower), however, the diagnosable regions of the

bea.n" elements are squeezed toward the frane joints, thereby reducing the

diagnosability of the frame. To illustrate the effect, diagnosable reaos on bea-n

elements 3, 5, 20, and 24 at the fundamental frequency are computed for a crack of

9=0.005 and presented in Table 9. This 9 coresponds to the relative crack depths of

0.14 an 0.20 for beein.s with slenderness ratios of 10 and 20, respectively.

Two different sets of response locations are used in generating Table 9. One

set(group 1 of the table) is the same as that used previously. In the second set(group

2), the response statons are moved closer to the PNs. In both cases, diagnosable

regions of the beam elements studied are s laer than those for a crack with

e=0.024. :However, when the response stations move closer to the PN.Ps, the

diagnosability increases sLgnificantly. For a crack with 9=0.001, corresponding to the

relative crack depths of 0.062 and 0.08 for slenderness ratios of 10 and 20, no

segments of the elements 3. 6, 20, or 2V are diagnosable when the response stations

are at the locations given in Table 9. In conclusion, if smaller defeccns can be

placed closer to the P.NPs, larger regions become diagnosable.
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TABLE 9

Diagnosable R.egions for a Crack with 9=.005

(Nomenclature same as in Table 8)

I) ?Pa-asneter values same as in Table 5 except for 9

INDJ DR RS P D(

13d .90-1.0 24 110
6 nI .7-1.0 24 22

20 .84-1.0 21 is

241 92-1.0 248

2) Parameter values saine as in (1) except for the response locations

txs = .613 21 = .483 t2, = .634

jg= .387 t2= .517 7 = .386

Y D DR RS PD(%)
3 .70-1.0 24 30

6 .00-.12 21 45.57-1.0 24

20 i .00-.05 21.24 35
.72-100 21
.00O-. 09 24

2 4  .68-.74 24 27
.88-1.0 24

4.8. The WFfect of Damping on the Trends

As the damping factor, 6, is increased, the amoditudes of deftections. I V

therefore, the transn-issibities are reduced. Table 10 Usts four groups of relative-

transmissibiity-change data for a d value of 0.10. Other parameters are kept the

same as in Table 4 which contains data for 6=0.01. The compe.riscn of Table 10 with

the corresmon.iag data groups in Table 4 yields the folowing conclusions:

i) Positive Rr values are invariably reduced as 6 increases. An exa.ple is the

case of a crack on girder 20. 41though all of the responses are ir.uenced in this case,
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TAL 10

Relative Tramsissibility Changes vs Crack Location

Excitation on column 7 at a distance of .95, f = .96, 6 .10, G = .024.

Response Locations:

ia = .819 t2l = .4 75  24 = .649
, v = .382 t22 = .525 tv = .251

= crack location. RS : resonse station)

1) Crack on column 3

RS is RS 19 RS 21 RS 22 RS 24 RS 27
' -. , . ,," •

0.001 -0.037 0.001 0.036 0.006 027 -0.001

0.200 -0.009 0.000 0.009 0.001 0.008 -0.000
0.300 0.000 0.000 -0.000 -0.000 0.000 0.000
0.400 0.006 0.000 -0.006 -0.001 . 0.024 0.001
0.500 0.009 0.000 -0.010 -0.001 0.0740.00
0.600 0.009 0.001 -0.011 -0.002 0. 1 -8 0.002
0.700 0.006 0.001 -0.011 -0.001 0.240 0.003
O.8O0 0.002 0.001 -0.008 -0.001 0.3451 0.004
0.900 -0.004 0.002 -0.004 -0.000 0.457 0.U04
0.999 -0.011 0.002 0.001 0.000 10.571 0.005

2) Crack on column 6

RS 16 RS 19 RS2 1 RS 22 RS 24 RS 27

0.001 0.074 0.007 -0.429 -0.044 -0.325 -0.008
0.100 0.048 0.004 -0.250 -0.030 -0.153 -0.003
0.200 0.027 0.002 -0.158 -0.018 -0.042 -0.000
0.300 0.011 0.001 -0.085 0.008 0.008 0.001
0.4-00 0.000 0.000 _-0001 -0.000 0.001 0.000
0.500 -0.005 -0.000 0.034 0.005 0 -0.002
0.600 -0.006 0.000 0.042 0.009 -0.171 ,-0.006
0.700 -0.003 0.001 0.024 0.010 -0.325 -0.010
0.800 0.005 0.002 -0.015 0.010 -0.513 -. 015
0.900 0.015 0.004 -0.075 0.008 -0.725 -0.023
0.999 0.029 0.008 -0.150 0.004 -0.883 -0.030



99

TABLE 10
(continued)

3) Crack on girder 20

RS is RS 19 S S21 RS 22 RS 24 RS 27

0.100 0.089 0.007 0.025 0.166 0.005S0.200 0.G65 O .005 O. C40 0.010 0.121 0.006

0.300 0.043 0.003 -0.021 -0.001 0.00 0.004
0.400 0.023 i 0.001 -0.041 0.005 0.04.2 0.002
0.500 0.005 0.000 -0.016 -0.002 0.009 0.o0
0.600 -0.011 -0.000 05 0.007 -0.020 -0.001
0.700 -0.023 -0.000 0.171 0.024 -0.045 -0.002
0.800 -0.034 0.001 j0.330j 0.047 -0.04 -0.003t 0.900 -0.041 0.002 0.531 0.078 -0.079 -0.003
0.999 -0.046 0.004 ,0788 0.110 -0.089 -0.003

4) .Crack on girder 24

RS1 is RS19 RS 21 RS 22 R-q24 A RS27

0.001 -0.011 0.002 0.C0 0.000 0 0.005
0.100 -0.009 0.002 0.005 0.001 0211 0.002
0.200 -0.006 0.001 0.008 0.002 -0.037 -0.000
0.300 -0.004 0.000 0.008 0.002 1 -0.001
0.400 -3.C02 0.000 0.006 0.002 1-0-15i -0.001
0.500 -0.001 -0.000 0.002 0.001 -0075 -0.001
0.600 .0.001 0.000 -0.004 -0.001 0.149 0.001
0.700 0.002 0.000 -0.012 -0.003 0.323 0.004
0.-00 0.003 0.001 -0.022 -0.006 0.146 0.007
0.900 0.004 0.002 -0.034 -0.009 o.oi 1
0.999 0.005 0.003 0.0 7' -0.012 o o. !

thems. adaresely affected trams-issibiD-y changes -- e those at t!e stations 19 a.zd

27, the farthest two stations from the cracked -irder, which were reduced to near

zero values. The stations near the crack are not afected so signidcantly. Exan._ple:

t.e case of a crack on girder 24.

ii) Negative R- values are affected less by an increase in 6. The magnitude of a

negative t-ransmissibility change can be anplidfed or reduced, both not very

signiftcantly. E=amLe: R values at station 24 for a crack on beai= elemments 6 and

• , &A
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20.

The diagnosable regions with 3=0.10 are computed a-.d presented in Table 13.

When these regions are compared with the corresponding data in Table 6, it is

observed that an increase in the damping factor from 0.01 to 0.10 leaves the trends

essentially unaffected and reduces the diagnosable regions slightly (between 0 to 6

percentage points for the cases presented in Table 11).

4.9. A Respons Station on a Column

At the fundamental frequency, the transissibility cha.nge on a column for a

given crack is found to be almost independent of the response location on that

columnn. Relative transm-issibility changes at a response station on column 8 for a

crack on vazrious beam elements are shown in Table 12 .in this examnle, the excitation

is on column 1. Only one crack location on each bea= is considered. Beams are

grouped based on the closeness of the corresmonding R7. values. For example. P-

values for a crack at a location of 0.15 on each of the bearns 1, 7, 13 and 16-range

-=ra 0.125 to 0.150. The Rr value for a particu/iar crack is nearly the same regardiess

of where the response station is located on colurn S. That nearly constant value for

the crack on colu=n 7, for example, is 0.15. Furthermore, the transmissibility

changes at a station on coLumn 9 are very close to those on column e, as weL as being

nearly constant along the length of column 9.

Table 12 indicates that as the crack is noved to upper levels on the frame, the

Rr value on column B decreases. There is especially a sigmif~c-nt decrease frm the

f-st level to the second(Fig. 17). The overall RI values, howe-mr, are not very largIe.

A transducer on a colunn may, nevertheless, help in diagnosis by diferentiating

between a crack on the first level and on the upper levels.

4.10. Effect of the Crack Model o- the Transmissibility Method

In this study, a Mode-I crack has been modeled as a torsionaL spr ing. The :---ack

surface has been assumed to be perpendicular to the neutral acs of the beam-

-- AII I I I I I Id n m m m n m 'ii il
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TABE I

Diagnosable Regions for a Fr=ie with Heavier faping

Parameter values sa-e as in Table 6 except 6 =.10

Nomenclatiure same as in Table E,
I- I D

L DR RS J PD(%.)

3 .00-.03 24 49
.54-1.0 24

8 .00 -. 2S 21
.54-1.0 24

.00 - .15 21.24
20 .15-.25 24 61

.54-1.0 21

.00-.14 24

24 .25-.4-8 24 75.58-..1 24
.25-1.0 24

TABLE 12

Relative Tra.ns-missibility Cha'.ges at a Response Station on Coimn S

6=.01, excitation or colunr. I at .95, 8 = .96

9 = .024, crack location is .15 on all the bea.-n elements

IND = no. of the beam element with the crack

Rr = relative trLansissibility change

M 1.7,13,16 5,11 20,21.23 6,9 24.25,25 15

R7 .125 -. 150 .069 .034 -. C60 .010- .011 .004-.008 .0021

element on which the crack is located It can be shown, however, that the trends of

relative transmissibilty changes are independent of the crack model as long as the

crack introduces a reduction in the ftexural rigidity of the beam. To this end, a one-

story four-span frame excited at the z.id-coluzmn is analyzed (Figure 30). The

fundamental characteristic value of such a uniform frame is L687. In the
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computations, the frane is excited at a 9 value of 1.68, Damping factor is taken to

be 0.01. Two response stations are placed on girders 6 and 5 at the locations 0.69 and

0.56, respectively. (,N's of these gders for a unifor- fane are at 0.581 and 0.551.,

respectively, when the ex:itaticn is on column 3 at a distance of 0.95 fro= the

ground.)

First, the relative transmissibiity changes at the two stations of the uniform

-rma were computed for a crack of 9=0.01 on girder 9. as the crack location was

varied along the girder. it was observed that the station on girder 8 exhibited Much

more significant transmissibility changes except when the crack was in the mid-

region of gi-der 9. In the latter case, both transmissibility changes were small Next.

the length of girder 9 was assumed to be 20% longer than. the lengths of the other

columns and girder.s. which made the former less rigid than the others and

qualitatively sixulated a crack. With the other para,-neters kept the same, the

transrissibilitY changes at the t,o stations relative to the L-ansmissibilities across

the undamaged uniform fr.--ae were conuted. The relative trans .-ussibility changes

due to the lengtherdr'g of gir -er 9 wvers found to be -0.41 and 0.88 at stations S and 1,

respectively. As the :esult indicates, softening in a region of a fraL e strUct"re

affects the response at the nearest station the mcst.

(D 7 D a 9

1 5

,4--

Fig'e 30. A one-story four-span f-arme.

... .. . ...... ... ......-,,, 1_ & A
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CHAPT=R 5

Discussion and Conclusions

Nondestructivre testing of large-scale structures is stil in its infancy. Local

met-hods currently used reur a sweeping of the whole structure and can become

costly and time-consuming. A global method whereby a structure c-an be continualily-

monitored and damage can be isolated at least within a sectioc of the st:--,cture is

needed.. 'Such a method. the transmissibility miethod. is proposed in this study. The

tranmissibility -nethod. which is based on the relative trasmissibility, changes at

varous response stations, isolates a crack to within one or two cells of a frame

structure after which- a local method may be used to pinpoint the crack. In the study,

the erfects of excitatilon location and Lrecuency, location of resnponse stations, crack

location and severity, and damping on t-he relative transnissibility changes are

investigated. General trends of the values of transmnissibility changes as a function of

these factors are established. In practice, these trends can be used for locating a

crack, given the transmissibility changes. The following conclusions are reached from

the transmissibilty analysis:

i) The most signiftcant transmis sibility change is usually observed at a response

stationin, t1he neighborhood of the crack.

ii) The trends as stated in (i) a-re highly insensitive to the excitation location.

iii) The trends are insensitiv e to the crack depth and material properti.es such as

damping.

iv) The trends are highly insensitive to the location of the response stations when

the stations are 2t the vicinity of the PNPs. Trends, however, are lost away from the

?N~s, in which case damage may be detected but cannot be located. On the other

band. the closer the response stations to the PNPs, the largver are the txansmiJssibility



104
changes an-d the chances of diagnosing a crack.

v) A vlitude of de.ections and accelerations are- s=n.aU near- the -NPs. 71berefore,

how close the response statior-s can be located to the PNPs depends on the signal

levels which can be mieasured.

vi) Cracks at or near the joints of a frame are most easily diagnosable. A crack

located away from the loints, in the mid-regions of the beam elements. may not be

diagnosable.

vii) fliagnosability of a crack increases if tr-ansm-issibility data is available at

more than one resonant frequency.

Conclusion (vi) is especially encouraging in the light of the fact that structures

such as offshore pia#t!orms usua.Uy fail at the foundation or develop cracks at th:e

welded joints.

Th-'e electrical analogy method as developed for frame str-uctur=es in this study

provide an economical test for the a-nalysis of large strutztures. The responses

co-mputed with the analogy are exact insofar- as Bern.oul-Euler theory is exact. The

str-uctures =~alyzed in the study are assumn-ed rigidly dxed all Uze ground leveL in the

case of non-ricid foundations. foundation tedblllty can be accounted for by ianserting

resistances in the electrical cir-cuit at points corresponding to the anchors'34, pp.

The other nondestructive method of damnage diagnosis investigated L-: th:is sTrudy

is the frequency =ethod. In complex structures, the zhanges in modal fre-cuencies

due to a crack a." sma.a Therefore, the frequency methocd is =ot stuitable for suc.h

structures. For simple structures such as beams. boy-ever, it Is a feasibzle method

It is shown in the study that closely spaced inuitiple cracks can be e.fectnvely

represented by a single crack for which the sensitivity numuber, 93, is appro--cmately

ecual to the sum-- of the individual sensitivitynesVlnetit exists, however, in

diagnosing such a damage as to whether th:ere is only one major crack or several

closely --paced mizor cracks. Nevertheless, 1oca--ion of the daage can be identified
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quite accurately.

in the case of a structure with several cracks, only one of which is severe, it is

possible to diagnose the major crack. The contributions of m.inor cracks to frequency

decreases is small compared to that of the severe crack. The relative frequency

changes, R, in such a situation. exhibit a trend sihilaar to that which would be

observed were the major crack the only crack present on the structure. If there is

more than one .ajor crack, aot closely spaced. on the slrUcture, it is, in general, not

possible to diagnose det.--miristicaily the damage with only a few Ri values 1cvwn.

In the frequency m.ethod. curves of relative frequency changes, Pj. versus crack

location yield valuable information regarding dam.age diagnosis. it nay be pcssible to

estimate damage location, provided there is only one major crack, by only looking at

the relative mcagn.tudes of frequency decreases and using the relative-change curves.

In diagncsing da.m ae in a st-ucture usinug the frequency =ethcd. given thr-ee

post-danage characteristic values, f, the solution is sought for a s,gle crack since

there are not enough equations to solve for a large number of cracks. in solving for a

single crack (i.e. for e, and gj), two m'.easured g values are actually used -st T e

third measured g value is then compared with the computed oounterpart Which would

be produced by the crack with the characteristic pair (,q , .q ). It is shorn tht tthe

two. values nay not match closely even though the diagncsis Is accurate (that is, L.7

and 9,q identifyj the major crack correctly), the discrepancy possibly being due to the

presence of other iznor cracks. If the discrepancy is large, then the solution Is

rejected with the conclusion that .here is =ore than one major crack. Cn the other

hand. the choice of the pair of measured fl values to be used in comnputir4 e,, and ,qq

may affect the diagnosis. In some cases, choosing the two characteristic values which

correspond to the largest two R1 values leads to the correct diagnosis. It is not clear,

however, whether there is a-right choice in each case.

_ a . ... l = _ i MA
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The Program to Compute Dimensionless Deflections in a Frame
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* R?:D~). A(I).DCPLX CDSIN. CDCOS, CD=Q,

B, BI, W.WP, Q, QP, P,PP ED1. EXP2, ALF
PZWATL5 XT(NT) ES(i). EC(1). T-H(1, WK(1, XE, BJN,, DAM. D1, D2. D3, D4

C THIlS SUrBROUTYDE CCOPIJ7=S 7,-= DI1YESIONLE SS COPLEX DEFLECTIONS

C AT SELECTED LOCATIONS ON AN Nxq PlakNAR FRAE STRUCTURE 'WITH" OR

C WTHO-'UT CRACKS M-CITE AT AN ARBITRARY LOCATION BY A SINIJJSOMAL

C FORCE. T-HE FRAE IS ASSUMED TO HAVE UNIFORA' PROPERTIES EXCZT

C FOR Th2 FLOOR HEIG-I AND SPAN WM"FlTS. THE BEAM ELEMNTS

C COLOSING THE R \~AE UBE AS DLAN'ED IN SECTION 2.4.

C 7-T: FRA.C I S * SIM L. .,-L B Y 11 C IR CUT.

C

C WR =-N BY 2~~TA. AX ;UN

C DATE LAST REVIS-aD: APRIL 195

C

C INPUT: (ALL. OF -;z-: INPUT VARIAB3LE-S ARE ?UrERVED)

C

C N NNM R0FS RE kr

C M NUGER OF SIP.A.NS OF THE FRN (NO. OF ANCH.ORS -1)

C -K NUUBER OF CRACKS ON 7HE FRA.ME (ZERO4. FOR NOC-CK CASE).

C ES A VECTOR OF LE-NGTTH- N+M. =- FIRUST N LOCATIONS SHOULD COINTAINq

C THE RELATIVE FLOOR 1--ETS, AL, La, IN TEE1 ORDER FROM GROUND\

C UP, WIME Lc IS THE-= REFERR'CE LENGTH C'HOSEN FOR THE -- A0 ALND

C L, IS =. 1- =.GHT OF THE i t FLOOR. TEE LAST M LOCATIONS

C SHOULD COINTAIN T= RELAIVE SPAkN WIDTH.-S, 4,;/ La. IN 7HE ORDE

C FROM LEFT' TO RIGHT, WI-M.E L, IS THi WIDTH OF T,- j t~ SPAN.

C EC A VECTOR OF LENGTH MAX( 1.K) CONTAINING THE RELATIVE CRACXK

C LOCATIONS, L4/ 1 , WEE)rzE L, IS THE LENGTH OFTrE i th

C BEA" ELY-"NT WHICH CARRFLIS THE ith CRACK WHE4 T= itba CRAkCK

C - IS 71:1 ONLY CRAkCK OR TYT. IIRSTI ONE OF A GROUP OF CRACKS ON

C THE j th EZIEY'r, THEE DISTA NCE L4 OF THE CRACK IS M-rkS=R
C FROM TI-E LEFT(LOWER) END OF THE GIRDER(COLULN) ON WHIlCH TIEE



q
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C CRACK IS LOCATED. OT-ERWISE, LC IS THE DISTANCE BETWEN -.E
C (i-1)th AND ith CRACKS. T7-.a OPDERNG OF THE CRACK LOCATIONS
C WITHIN EC SHOULD FOLLOW THE NUMBERIG SC-IME ELALNED r%
C SECTION 2-4. NAMEY, FIRST THE, LOCATIONS CF TI-I COLUIC CRACKS,
C TEN THOSE OF THE GIRDER CRACKS SHOULD BE W'fRITI'N.
C 0 < EC(Z) < 1. EC IS IGNORED WI-MN K=O.

C. TIM A VECTOR OF LENGTH MAX(1,K) CONTAINNG TI- SENSITIVIT
C NlMERS, 9, OF 'II CRACKS IN THE SAME ORDER AS EC.
C TI-(I) 0 0 for 1 r I - K IGNORED WHEN K=O.

C IND A VECTOR OF LENGTH LMAX(.K) CONTAINLNG T-._M NU2XBLERS OF T-
C BEAM ELTS ON WIcC THE CRACKS ARE LOCATED, ORDERED IN
C CORRESPONDENCE WITH EC. MID() ! IND(2) m ... IND(K).

C IE THE_ NUMBER OF T-E BEAM ELEMENT ON W'IC'"EH EXCITATION IS'
C APPLIED.

C XE THE REATIVE LOCATION OF ThE EXCITATION, LE/L(IE), WI-RE LE

C IS TIrE DISTANCE TO TI- EXCITATION FROM THE LZT(LOWER) END

C OF T - GIRDER(COLUZN) ON W-CHr"--_ EXCITATION IS A2?=L-.
C L(IE) IS THE LENGTH OF THAT GIRDER(COLLfZN). 0 < XE < 1.

C NT TOTAL NUBER OF RESPONSE STATIONS ON T?- FRA.\E.
C IT A VECTOR OF LENGTH NT CONTA-ING TI- N-lfBERS OF TI BEFM
C ELE-NTS WHIlCH i-AVE A RESPONSE STATION ON TIEM. ONLY ONE
C RESPONSE STATION PER BEAM ELfENT IS ALLOW=E.
C IT(1) < IT(2) < ... < IT( NT).
C XT A VECTOR OF LENGTH NTCONTAINING TIM REATIVE LOCATIONS,
C LT(J)/L(IT(;)), OF THEI RESPONSE STAIONS ON T1M
C CORr-ESPONDLNG BEAM EL MNTS, W-_RE L(IT(J)) IS T-I LENGTH
C OF TIM PARTICULAR BEAM ELEMNT.
C BLN UNDANOED BETA VALUE.
C DAM DA1ING FACTOR.
C IUR N*(M+1) -2K + NT - 1. TIE ORDER OF MA7T.U U.
C DM N+K+NT +1.T= ORDEROFMATRIXZ.

C

C OTPUL 1T:

C
C RH A COMPLX VECTOR OF LENGTH I. CONTAINING Ti] NONDIIENSIONAL

C TRANSVERSE DEFLECTIONS, y. T2- FIST N LOCATIONS CONTAI-N T-E
C LATERAL DISP LACEIMr"'S OF THI N FLOORS, ORDERED FROM -i FI.ST

I ML
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C FLOOR UP. 7HE N=.L K LOCATIONS CONTMN M~ EE JCIN AT TH

C CRACKS, ORDERED IN ACCORDALNCE WITai EC. =? DEFLECTIONS AT T-i2

C RESPONSE STATIONS ARE CONTANED D4 =I-E =~ NT LCCATIONS. 71HE

C LAST LOCATION CONTAIS TIHE DE'LECTION AT TIHE E'CITATIO0N POLN'.

C ME COBANGES fI TRAN MSSSMaTS CA.N BE OBTAINED BY C0UMTG

C THEI A-VLI"t.TDES OF DEFLECTIONS AT THEI RESPONSE STATIONS W17-H

C ANDl WIrhoUT =?- CRACK(S).

C
C WORK ARRXY S:

C U A COMPLEX ARRAY OF ORDER ILUR X WPU.
C X A COMPLECARRAY OF ORDER DR X IULR

C XTIR A COMPLEX ARRAY OF ORDER ILTR X DTL

C Z A COMMELX ARZRAY. OF ORDER DM X Ml

CWA A CONPLEX VECTOR OF LENGTH' IR )
C WK A REAL VECTOR OF LENGTH . I'R

C* lWK AN =TEGER VE CTOR O F LE.NG~zh K +2 N-T +L 7EZ FIRST K L CCATIO0NS
C ARE RESERZVED FOR THE MU-LTIPUCTITS OF =1~ CRACXS ON A BEAM

C ElE2MNT. THE NMT NT -;- I LOCATIONS SOIETIIES CONTADI CRACK

C INDICES Wz-=-N A CRACK AND A RESPONSE STATION OR = ZX =CTATION

CAREILOCATED ON 7.M SAE BEAM EENT. Tl=EP NLr,%BE7RS OF

C ROWE IN Z MAT.RI( W -2CH CORrESPOND TO THE DEFLECTIONSAT

C THE RESPONSE STATICNS ARE SAVED IN TIHE LAST N7 LOCATINS.

C
C REqL=IE LMSL ROUTIES:

C
C L;,.-2C (CO0=-INE 1.1 EqUIOMN SOLVER) A1,D1 OTHMER ROUT1IES CA= .1D BY 17.

C !EZC FACTORS 7i2 COEFFICIEYT MATRIX INTO THE~ L-U DECOOn ITON

C OF A RCWWISE l-ER,'fL7TA~iN OF A.A.ND SOLITFS MThM SY.SL. LZEQ2C COOU ES

C THE RESIDUALS AND USES ITERATIV WYROVEN U NTl. 7- SOL;L-TION

C IS ACCURATE TO MACEUNE PRECISION. (REF: IMSL LIBRARY RE.ERNCE

C MANUAL,4 97H ED., V.2. CHPT. L. LMSL. LNC., 1952-)
C
C REQUIRED FORTRAN FUNCTIOCN SU-BPROGRAMS:

C
C CDSIN, CDCOS, CD), DCMPLX DSQRT. DUN1. DILAX1.

C



C ERROR COINDITIONS:
C

C IF IE =IT(J) FOR ANY JAN .AS(E- X-1(j)) IS S LLERT.HA
C 5.D-4 OR F Dl)= 1c;OR IT(;) FOR ANYfIAND JAND
C EC(I) = )M OR XT(j) T-'M SUBRObTDE N T'R TO THE .!.N ??'.OGRAM.
C *=someusuauaa aasa*amuu*SunuNo&"aaa~u Saoo *SO**** *0=8 mos .... a.awa

C C0107.7.r TI--I DAMPED B VALUE
C

D1 = DSQRT-(1.D)O4DAM ASZ)

D2 = .5DO/DSQRTl(D!)

D3 = .5DOD5,SQRT(.5DO-0.5DO-01)/Dl

B = L7,\DC3PLX(DSQR:,(D2+D3),-DSQRT(fl2.D3))

C P~i T'-~ TFII OF CIUCS ON ZACH CRACKED M=- 7

IF (K .LZ. 1) GO TO 5

J3 = 1
KA1U = K - I

DO04 T1= 1. IQA1

IF (D\D(Ji+i) .NrID(31)) Go TO 3
IV-K(33) = VWK(J3) + 1
GO TO 4

3 33 = J3 - I

4 C0 NT=UE

C

5 DOs8ji 1,MIR
DO 6 Il 1, DR

8. X(Il.J1) O.DO

DO 7 Il 1, MU

7 

CI 
AT(11. 

3) 
=O.DO

8 CONMFUE
DO 93J1 = ,DM
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DO 9 Il13.=. UM

9 Z(It.Jl) = .flO

IN~P3 = Nn(M+1)

C
C SET VAP.IABLES

C

K= 1.

NU4 N1 + I.

JADD = 0

INT01 =NT + 1.

DO 12 L= 1.NT-ml

12 rvYK(Ki-L) =0

1Com' =4

NOW= 1

C ESTABUSE. TIMMATRICES

15 DO 230 L = 1. LU
11 = IADD

DO 220 1 = 1, P1J

12 1

IF (ICOF.Z"Q. 0) J2 = 1*N + L

IGMD = I
D3 = O.DO

U' (LND(P) .NE. J .ORL.,R.MI. K) GO TO 120

D I = ECC(M)
IF 3) GO TO 20

D2 =)M

IF (NOW .GT. NT .ORL M N IT(NOW)) GO TO 40
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IF (DABS(E - XT(NOW)) .LT. 5.D)-4) GO TO 240
D2 = DMLNl(X,X(NOW))

In = mLAX(M.xT(NOlW))

GO TO 40

20 EF (NOW .GT. NT.OR. IT(NOW) .NTE. :) GO TO 90

D2 =XT(NOW)

40 IF (DtI- D2) 50, 240, 70

50 BI=EC(X.R)5B

12 =N + n

J2=34
34= X4+ 2

tT(2.32) = - *lO('T-(R DCXfL( 1.fl.DAM))

UJ(J2,J2-61) = -U(J2.32)

tT(32+1.32) = U(J*Z2-621)

UJ(3241,32+l) = U(32,312)

KR = K+ 1
ASSIGN 190 TO X105)~

ASSIGN 40 TO SCR

IF (KR .Lr,. M8) GO TO 60
33 = 3 - I

38 Ili7(J3)

ASSIGN 5\'0 TO XCR

GO TO 130
so0D l= D1+;-ECMK)

GO TO 130
70 31 =(EC(K) + D2 -D 1) =

3rX(~Z') = EC(la)

1~~(K--JT)lmK
~C(KR =D:D2

12 = NMP1 +K - K+ :-LT

12 = N + K + JET

JT= -+1

ASSIGN 200 TO MJle(

D4 = D2

IF (Dl3 .EQ. .O) GO 7O 71

ASSIGN 40 TO in,

D2= 03
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D3 = O.DO

GO TO 72

71 ASSIGN 90 TO ICR

72 IF (1'r(NOW) .NM £D(3) .Ca D4 .NNE 'C(NQWOff) GO TO 73

I(K+NTPI NOW) = 12

NOW = NOW + 1

GO TO 130

73 17 = 12
GO TO 130

So 31 (B2 -D3l)-B
12=N K+JET
12 Nt+ + K+K+

=TFk= =J1 +1

Di = D2

ASSIGN 200 TO XtYL

ASSIGN i0 TO JCR.

IF (D3 .Q. o.Do) GO TO 84

D2= D3

DS = 0.DO

ASSIGN 80 TO CR

34 I' (IT(NOW) ..N- 3 .CR. DL .)1- ,CTI(NC )) GO TO -5

IWK(K+NT . +N0W) =12

NOW = NOW+ 1

GO TO 130

55 17 = 12

GO TO 130

90 BI =EC( Q.)a

12 =N - I."

J2 = %4

4 34 + 2
U(32,32) =-I.DO/(B'Tk (KR) DCMiPLX(t-D,DA A))
u(02,12 ) = -u(32,32)

u(32+-1.32) = u(3z2 2#)

IJ(32+1.J2+1) = u(32,.32)

ASSIGN 90 TO JCR

ASSIGN 190 TO .JT-



IF (R 12E. 48) GO TO 100

33 = 33 +1

38 = FirX(J)

ASSIGN 1107TO JCR

GO TO 130

100 D = D + EC(XR)

GO TO 130

110 BI = (I.DC -D1 1)'B

IGID =

12 1

L (IC01L0 EQ. 0) j2 -.IN #L

ASSIGN 210 TO JTU

GO TO 130

120 D I = .' 00

Tr (I E .NE. 3) GO TO1 12 1

B2 =.E

IlF (NOW .G. NT 7CR. M .NEZ. IT(NOW)) GO -1O 80

T '(DA.SS(YC - XT(, Nolf)) 17T. 5.D-4) CO TO 240

D3 = MAX1~.X'NOW')

GO TO 80

12 '(NOW .G-.- N7 OF- rl(NOW) .NE. 3)GO TO 122

BC2 = )C(NOW)

Go To 80

122 31 = 3
!G-'U = 3

AS-SIGN 210 To Z.UL

'10 31 'z

EXF CfLE(-31)
W = -~C -X2/2D

M.= (DT I C2)/2D~o

= CflS~(BI



ALF =WP'EX?2 -3 1;

Qp = Wa-WlIALF

pp = (W + EXi)/AZ

WP = (N -XI )/ALF

tJ(32,J2) = tJ(J2,2) +

IF (I I .EQ. 0) GO TO 160

t(;1.j 1) = Tj(3 I-i) +

U (J1,J2) =W

L:1(:2.11) =r

GO TO (150, 170, 130).Im

z(I1J.i) =Z(1l.11) +P

'Z(11,12) =Z(11.12) - PP

Z(I2,I1) Z(12.fl) - ?p

10X(12,:2)= (1J)-Q

X(I12) Z(IZ12)P

170 =X((11,1))

z(12.12) = Z(1.1) +~

1n0 31 = Z2

11 =12

GO TO JUM.00 110, 190, 200, 210)

GO TO JC (4. SO. 90. 110)

201= j +

220 CON-Mh1.T



120

230 0ON7-N

IF (JALD Ell. IN) GO TO 250

JAflD = N
ICOT = 0

LU =N

GO TO 15
240 WRITIE(S,250)
25-0 F OR 3LAZ( XL"LC CATIONS S P ZC FO0R DLU7= 7.NT 7hQ 7:T Na O, C 10S Z

250 D1I= .Do

DO 255 I = 1. If

255 D I=Di + ES(N-I)

BI ED1

DO 256 1 = 1. N

256 Z(1,) = Z(U.) + 3

C IMkTRICES ESTABLSHM

DO 270 1 = 1, NTPI-

(I KKN::I .Eq. 0) GO TO Z70

270 C ONT MU E

DO0 300 ; = 1. DO.

DO 290 1 = 1. IUR

290 XTR(I.J) = X(:,I)

300 'CONMULE

ISOB = 0

CALL LEQ2C(U, ITMPS , CF, IUI?, 15GB, WA, -f~,(IR

IF (IE. .NE. 0) RETURN

C

c co~upTE z -XT7TXr
C

DO 380 J=1, DM



DO 370 1 1, J

BI = 0.Do

DO 360 11l = 1. ITJR

360 31 = BI:j X(7.,1) -X-TR(I I.)
370 Z(I.J) = Z(UJ) - B

380 C ONNhU E

11 =DM - 1

DO 390 U = 1.. 11

£1 = j + I 
I

DO 390 1 = J1 I-DM

390 z(lJ") = z(.: )

DO 4C0 1 = 1. Zla

400 ?R.E(I) = G.:"o

RH('7) = 12 0

SIi= N

41=0

C~lLLW2(Z..M .?.~ .~. 0,~AK

EN70 N' ) .7~~
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